cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186346 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186347.

This page as a plain text file.
%I A186346 #5 Mar 30 2012 18:57:18
%S A186346 3,5,7,9,11,12,14,15,17,18,20,21,23,24,25,27,28,29,31,32,33,35,36,37,
%T A186346 39,40,41,42,44,45,46,47,49,50,51,52,54,55,56,57,59,60,61,62,63,65,66,
%U A186346 67,68,69,71,72,73,74,75,77,78,79,80,81,83,84,85,86,87,88,90,91,92,93,94,95,97,98,99,100,101,102,104,105,106,107,108,109,111,112,113,114,115,116,117,119,120,121,122,123,124,125,127,128,129,130,131,132,133,135,136,137,138,139,140,141
%N A186346 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2.  Complement of A186347.
%C A186346 See A186350 for a discussion of adjusted joint rank sequences.
%F A186346 a(n)=n+floor(sqrt(8n-1/2))=A186346(n).
%F A186346 b(n)=n+floor((n^2+1/2)/8)=A186347(n).
%e A186346 First, write
%e A186346 ....8....16..24..32..40..48..56..64..72..80.. (8i)
%e A186346 1..4..9..16...25...36......49....64.......81 (squares)
%e A186346 Then replace each number by its rank, where ties are settled by ranking 8i before the square:
%e A186346 a=(3,5,7,9,11,12,14,15,17,..)=A186346
%e A186346 b=(1,2,4,6,8,10,13,16,19,...)=A186347.
%t A186346 (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
%t A186346  d=1/2; u=8; v=0; x=1; y=0;
%t A186346 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
%t A186346 a[n_]:=n+Floor[h[n]];
%t A186346 k[n_]:=(x*n^2+y*n-v+d)/u;
%t A186346 b[n_]:=n+Floor[k[n]];
%t A186346 Table[a[n],{n,1,120}]  (* A186346 *)
%t A186346 Table[b[n],{n,1,100}]  (* A186347 *)
%Y A186346 Cf. A186350, A186347, A186348, A186349.
%K A186346 nonn
%O A186346 1,1
%A A186346 _Clark Kimberling_, Feb 20 2011