cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186349 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186348.

This page as a plain text file.
%I A186349 #34 Apr 06 2024 20:32:08
%S A186349 1,2,4,5,8,10,13,15,19,22,26,29,34,38,43,47,53,58,64,69,76,82,89,95,
%T A186349 103,110,118,125,134,142,151,159,169,178,188,197,208,218,229,239,251,
%U A186349 262,274,285,298,310,323,335,349,362,376,389,404,418,433,447,463,478,494,509,526,542,559,575,593,610,628,645,664,682,701,719,739,758,778,797,818,838,859,879,901,922,944,965,988,1010
%N A186349 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186348.
%H A186349 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F A186349 a(n) = n + floor((n^2 - 1)/8).
%F A186349 a(n) = n + ceiling(n^2/8) - 1. - _Wesley Ivan Hurt_, Jun 28 2013
%F A186349 From _Bruno Berselli_, Jul 05 2013: (Start)
%F A186349 G.f.: x*(1 + x^2 - x^3 + x^4 - x^5)/((1+x)*(1+x^2)*(1-x)^3).
%F A186349 a(n) = (2*n*(n+8) - (1+(-1)^n)*(5+2*i^(n*(n+1))) - 2)/16 where i=sqrt(-1). (End)
%F A186349 E.g.f.: (8 - 2*cos(x) + (x^2 + 9*x - 6)*cosh(x) + (x^2 + 9*x - 1)*sinh(x))/8. - _Stefano Spezia_, Apr 06 2024
%e A186349 First, write
%e A186349 .....8...16..24..32..40..48..56..64..72..80.. (8i)
%e A186349 1..4..9..16...25...36.....49.....64.......81. (squares)
%e A186349 Then replace each number by its rank, where ties are settled by ranking 8i after the square:
%e A186349 p = (3,6,7,9,11,12,14,16,17,...) = A186348 = n + floor(sqrt(8n+1/2)).
%e A186349 q = (1,2,4,5,8,10,13,15,19,...) = a(n).
%p A186349 seq(k+ceil(k^2/8)-1,k=1..100); # _Wesley Ivan Hurt_, Jun 28 2013
%t A186349 (* adjusted joint rank sequences p and q (=a(n)), using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2 + y*n + z *)
%t A186349 d=-1/2; u=8; v=0; x=1; y=0;
%t A186349 k[n_]:=(x*n^2+y*n-v+d)/u;
%t A186349 a[n_]:=n+Floor[k[n]];
%t A186349 Table[a[n], {n, 1, 100}]
%o A186349 (Magma) m:=90; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x^2-x^3+x^4-x^5)/((1+x)*(1+x^2)*(1-x)^3))); // _Bruno Berselli_, Jul 05 2013
%o A186349 (PARI) a(n)=(n^2-1)\8+n \\ _Charles R Greathouse IV_, Jul 05 2013
%o A186349 (Maxima) makelist((2*n*(n+8)-(1+(-1)^n)*(5+2*%i^(n*(n+1)))-2)/16, n, 1, 90); /* _Bruno Berselli_, Jul 05 2013 */
%Y A186349 Cf. A186346, A186347, A186348.
%K A186349 nonn,easy
%O A186349 1,2
%A A186349 _Clark Kimberling_, Feb 20 2011