cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186350 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the odd numbers and the triangular numbers. Complement of A186351.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2011

Keywords

Comments

Suppose that f and g are strictly increasing functions for which (f(i)) and (g(j)) are integer sequences. If 0<|d|<1, the sets F={f(i): i>=1} and G={g(j)+d: j>=1} are clearly disjoint. Let f^=(inverse of f) and g^=(inverse of g). When the numbers in F and G are jointly ranked, the rank of f(n) is a(n):=n+floor(g^(f(n))-d), and the rank of g(n)+d is b(n):=n+floor(f^(g(n))+d). Therefore, the sequences a and b are a complementary pair.
Although the sequences (f(i)) and (g(j)) may not be disjoint, the sequences (f(i)) and (g(j)+d) are disjoint, and this observation enables two types of adjusted joint rankings:
(1) if 0
Using f(i)=ui+v, g(j)=xj^2+yj+z, we find a and b given by
a(n)=n+floor((-y+sqrt(4x(un+v-d)+y^2))/(2x)),
b(n)=n+floor((xn^2+yn-v+d)/(2u))),
where a(n) is the rank of un+v and b(n) is the rank
xn^2+yn+z+d, and d must be chosen small enough, in
absolute value, that the sets F and G are disjoint.
Example: f=A000217 (odd numbers) and g=A000290 (triangular numbers) yield adjusted joint rank sequences a=A186350 and b=A186351 for d=1/2 and a=A186352 and b=A186353 for d=-1/2.
For other classes of adjusted joint rank sequences, see A186145 and A186219.

Examples

			First, write
1..3..5..7..9..11..13..15..17..21..23.. (odds)
1..3....6.....10.......15......21.... (triangular)
Then replace each number by its rank, where ties are settled by ranking the odd number before the triangjular:
a=(1,3,5,7,8,10,11,12,14,....)=A186350
b=(2,4,6,9,13,17,21,26,32,...)=A186351.
		

Crossrefs

A005408 (odd numbers), A000217 (triangular numbers).

Programs

  • Mathematica
    (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
    d=1/2; u=2; v=-1; x=1/2; y=1/2; (* odds and triangular *)
    h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
    a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
    k[n_]:=(x*n^2+y*n-v+d)/u;
    b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
    Table[a[n],{n,1,120}]  (* A186350 *)
    Table[b[n],{n,1,100}]  (* A186351 *)

Formula

a(n)=n+floor(-1/2+sqrt(4n-9/4))=A186350(n).
b(n)=n+floor((n^2+n+3)/4)=A186351(n).