cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186377 a(n) equals the least sum of the squares of the coefficients in (1 + 2*x^k + x^p + x^q)^n found at sufficiently large p and q>(n+1)p for some fixed k>0.

This page as a plain text file.
%I A186377 #12 Feb 12 2015 04:39:19
%S A186377 1,7,79,1129,18559,333577,6365089,126652183,2598628543,54577439833,
%T A186377 1167481074529,25346459683783,557042221952881,12368307313680871,
%U A186377 277027947337574911,6251808554314780009,142015508983550880703
%N A186377 a(n) equals the least sum of the squares of the coefficients in (1 + 2*x^k + x^p + x^q)^n found at sufficiently large p and q>(n+1)p for some fixed k>0.
%C A186377 Equivalently, a(n) equals the sum of the squares of the coefficients in any one of the following polynomials:
%C A186377 . (2 + x^k + x^p + x^q)^n, or
%C A186377 . (1 + x^k + 2*x^p + x^q)^n, or
%C A186377 . (1 + x^k + x^p + 2*x^q)^n,
%C A186377 for all p>(n+1)k and q>(n+1)p and fixed k>0.
%F A186377 (1) a(n) = Sum_{k=0..n} C(n,k)^2 *4^(n-k) *Sum_{j=0..k} C(k,j)^2*C(2j,j).
%F A186377 Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
%F A186377 (2) A(x) = B(x)^3 * B(2^2*x)
%F A186377 where B(x) = Sum_{n>=0} x^n/n!^2 = BesselI(0, 2*sqrt(x)).
%F A186377 Recurrence: (n-1)*n^3*(3*n - 5)*a(n) = 2*(n-1)*(54*n^4 - 174*n^3 + 192*n^2 - 99*n + 20)*a(n-1) - 2*(441*n^5 - 2604*n^4 + 6102*n^3 - 7107*n^2 + 4111*n - 940)*a(n-2) + 2*(n-2)^2*(726*n^3 - 3076*n^2 + 4188*n - 1655)*a(n-3) - 225*(n-3)^2*(n-2)^2*(3*n - 2)*a(n-4). - _Vaclav Kotesovec_, Feb 12 2015
%F A186377 a(n) ~ 5^(2*n+2) / (2^(7/2) * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Feb 12 2015
%e A186377 G.f.: A(x) = 1 + 7*x + 79*x^2/2!^2 + 1129*x^3/3!^2 + 18559*x^4/4!^2 +...
%e A186377 The g.f. may be expressed as:
%e A186377 A(x) = [Sum_{n>=0} x^n/n!^2]^3 *[Sum_{n>=0} (4x)^n/n!^2] where
%e A186377 [Sum_{n>=0} x^n/n!^2]^3 = 1 + 3*x + 15*x^2/2!^2 + 93*x^3/3!^2 + 639*x^4/4!^2 + 4653*x^5/5!^2 +...+ A002893(n)*x^n/n!^2 +...
%t A186377 Table[Sum[Binomial[n,k]^2 * 4^(n-k) *Sum[Binomial[k,j]^2 * Binomial[2j,j], {j,0,k}], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Feb 11 2015 *)
%o A186377 (PARI) {a(n)=local(V=Vec((1+2*x+x^(n+2)+x^(n^2+2*n+3))^n));V*V~}
%o A186377 (PARI) {a(n)=sum(k=0,n,binomial(n,k)^2*4^(n-k)*sum(j=0,k,binomial(k,j)^2*binomial(2*j,j)))}
%o A186377 (PARI) {a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^3*sum(m=0,n,(2^2*x)^m/m!^2),n)}
%Y A186377 Cf. A186375, A186376, A186378.
%K A186377 nonn
%O A186377 0,2
%A A186377 _Paul D. Hanna_, Feb 19 2011