cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186378 a(n) equals the least sum of the squares of the coefficients in ((1 + x^k)^2 + x^p)^n found at sufficiently large p for some fixed k>0.

This page as a plain text file.
%I A186378 #13 Feb 12 2015 04:43:54
%S A186378 1,7,95,1609,30271,606057,12636689,271026455,5934011839,131978406553,
%T A186378 2971793928145,67586972435495,1549805136840625,35783848365934663,
%U A186378 831089570101489423,19400246240227360809,454864027237803296703
%N A186378 a(n) equals the least sum of the squares of the coefficients in ((1 + x^k)^2 + x^p)^n found at sufficiently large p for some fixed k>0.
%C A186378 Equivalently, a(n) equals the sum of the squares of the coefficients in the polynomial: (1 + 2*x + x^2 + x^p)^n for all p>2(n+1).
%C A186378 ...
%C A186378 More generally, let B(x) equal the g.f. for the least sum of the squares of the coefficients in (F(x^k) + x^p)^n where F(x) is a finite polynomial in x with degree d and p>(n+1)dk for some fixed k>0,
%C A186378 then B(x) = [Sum_{n>=0} x^n/n!^2]*[Sum_{n>=0} c(n)/n!^2] where c(n) equals the sum of the squares of the coefficients in the polynomial F(x)^n.
%F A186378 (1) a(n) = Sum_{k=0..n} C(n,k)^2*C(4k,2k).
%F A186378 Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
%F A186378 (2) A(x) = [Sum_{n>=0} (4n)!/(2n)!^2 *x^n/n!^2] *[Sum_{n>=0} x^n/n!^2].
%F A186378 Recurrence: n^2*(2*n-1)^2*(1152*n^4 - 8160*n^3 + 21040*n^2 - 23376*n + 9467)*a(n) = 3*(55296*n^8 - 503808*n^7 + 1891456*n^6 - 3812256*n^5 + 4504864*n^4 - 3193428*n^3 + 1326995*n^2 - 296732*n + 27900)*a(n-1) - 3*(451584*n^8 - 4607232*n^7 + 19744768*n^6 - 46227488*n^5 + 64243016*n^4 - 53731348*n^3 + 26049967*n^2 - 6596672*n + 675000)*a(n-2) + (n-2)^2*(2230272*n^6 - 16991232*n^5 + 49582720*n^4 - 69169056*n^3 + 46825856*n^2 - 13847412*n + 1451547)*a(n-3) - 900*(n-3)^2*(n-2)^2*(1152*n^4 - 3552*n^3 + 3472*n^2 - 1168*n + 123)*a(n-4). - _Vaclav Kotesovec_, Feb 12 2015
%F A186378 a(n) ~ 5^(2*n+3/2) / (2^(7/2) * Pi * n). - _Vaclav Kotesovec_, Feb 12 2015
%e A186378 G.f.: A(x) = 1 + 7*x + 95*x^2/2!^2 + 1609*x^3/3!^2 + 30271*x^4/4!^2 +...
%e A186378 The g.f. may be expressed as:
%e A186378 A(x) = C(x) * BesselI(0, 2*sqrt(x)) where
%e A186378 C(x)= 1 + 6*x + 70*x^2/2!^2 + 924*x^3/3!^2 + 12870*x^4/4!^2 +...+ (4n)!/(2n)!^2*x^n/n!^2
%t A186378 Table[Sum[Binomial[n,k]^2 * Binomial[4*k,2*k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Feb 11 2015 *)
%o A186378 (PARI) {a(n)=local(V=Vec((1+2*x+x^2+x^(2*n+3))^n));V*V~}
%o A186378 (PARI) {a(n)=sum(k=0,n,binomial(n,k)^2*(4*k)!/(2*k)!^2)}
%o A186378 (PARI) {a(n)=n!^2*polcoeff(sum(m=0,n,(4*m)!/(2*m)!^2*x^m/m!^2)*sum(m=0,n,x^m/m!^2+x*O(x^n)),n)}
%Y A186378 Cf. A186375, A186376, A186377, A186391, A186392.
%K A186378 nonn
%O A186378 0,2
%A A186378 _Paul D. Hanna_, Feb 19 2011