cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186379 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=4i and g(j)=j(j+1)/2 (triangular number). Complement of A186380.

This page as a plain text file.
%I A186379 #7 Mar 30 2012 18:57:18
%S A186379 3,5,7,9,10,12,13,15,16,18,19,21,22,24,25,26,28,29,30,32,33,34,36,37,
%T A186379 38,39,41,42,43,44,46,47,48,49,51,52,53,54,56,57,58,59,61,62,63,64,65,
%U A186379 67,68,69,70,71,73,74,75,76,77,79,80,81,82,83,84,86,87,88
%N A186379 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=4i and g(j)=j(j+1)/2 (triangular number).  Complement of A186380.
%C A186379 See A186350.
%F A186379 a(n)=n+floor(-1/2+sqrt(8n-3/4))=A186379(n).
%F A186379 b(n)=n+floor((n^2+n+1)/8)=A186380(n).
%e A186379 First, write
%e A186379 .....4..8..12..16..20..24..28.. (4*i)
%e A186379 1..3..6..10..15.....21.....28.. (triangular)
%e A186379 Then replace each number by its rank, where ties are settled by ranking 4i before the triangular:
%e A186379 a=(3,5,7,9,10,12,13,15,16,..)=A186379
%e A186379 b=(1,2,4,6,8,11,14,17,20,...)=A186380.
%t A186379 (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
%t A186379 d=1/2; u=4; v=0; x=1/2; y=1/2; (* 4i and triangular *)
%t A186379 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
%t A186379 a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
%t A186379 k[n_]:=(x*n^2+y*n-v+d)/u;
%t A186379 b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
%t A186379 Table[a[n], {n, 1, 120}]  (* A186379 *)
%t A186379 Table[b[n], {n, 1, 100}]  (* A186380 *)
%Y A186379 Cf. A186350, A186380, A186381, A186382.
%K A186379 nonn
%O A186379 1,1
%A A186379 _Clark Kimberling_, Feb 19 2011