cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186383 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=5i and g(j)=j(j+1)/2 (triangular number). Complement of A186384.

This page as a plain text file.
%I A186383 #7 Mar 30 2012 18:57:18
%S A186383 3,5,7,9,11,13,14,16,17,19,20,22,23,25,26,28,29,30,32,33,34,36,37,38,
%T A186383 40,41,42,44,45,46,48,49,50,51,53,54,55,56,58,59,60,61,63,64,65,66,68,
%U A186383 69,70,71,73,74,75,76,77,79,80,81,82,83,85,86,87,88,89,91
%N A186383 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=5i and g(j)=j(j+1)/2 (triangular number).  Complement of A186384.
%e A186383 First, write
%e A186383 .....5...10..15..20..25..30.. (5i)
%e A186383 1..3..6..10..15....21..28.. (triangular)
%e A186383 Then replace each number by its rank, where ties are settled by ranking 5i before the triangular:
%e A186383 a=(3,5,7,9,11,13,14,16,17,..)=A186383
%e A186383 b=(1,2,4,6,8,10,12,15,18,...)=A186384.
%t A186383 (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
%t A186383 d=1/2; u=5; v=0; x=1/2; y=1/2; (* 5i and triangular *)
%t A186383 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
%t A186383 a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
%t A186383 k[n_]:=(x*n^2+y*n-v+d)/u;
%t A186383 b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
%t A186383 Table[a[n], {n, 1, 120}]  (* A186383 *)
%t A186383 Table[b[n], {n, 1, 100}]  (* A186384 *)
%Y A186383 Cf. A186350, A186384, A186385, A186386.
%K A186383 nonn
%O A186383 1,1
%A A186383 _Clark Kimberling_, Feb 19 2011