This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186384 #4 Mar 30 2012 18:57:18 %S A186384 1,2,4,6,8,10,12,15,18,21,24,27,31,35,39,43,47,52,57,62,67,72,78,84, %T A186384 90,96,102,109,116,123,130,137,145,153,161,169,177,186,195,204,213, %U A186384 222,232,242,252,262,272,283,294,305,316,327,339,351,363,375,387,400,413,426,439,452,466,480,494,508,522,537,552,567,582,597,613,629,645,661,677,694,711,728,745,762,780,798,816,834,852,871,890 %N A186384 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=5i and g(j)=j(j+1)/2 (triangular number). Complement of A186383. %e A186384 First, write %e A186384 .....5...10..15..20..25..30.. (5i) %e A186384 1..3..6..10..15....21..28.. (triangular) %e A186384 Then replace each number by its rank, where ties are settled by ranking 5i before the triangular: %e A186384 a=(3,5,7,9,11,13,14,16,17,..)=A186383 %e A186384 b=(1,2,4,6,8,10,12,15,18,...)=A186384. %t A186384 (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *) %t A186384 d=1/2; u=5; v=0; x=1/2; y=1/2; (* 5i and triangular *) %t A186384 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x); %t A186384 a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *) %t A186384 k[n_]:=(x*n^2+y*n-v+d)/u; %t A186384 b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *) %t A186384 Table[a[n], {n, 1, 120}] (* A186383 *) %t A186384 Table[b[n], {n, 1, 100}] (* A186384 *) %Y A186384 Cf. A186350, A186383, A186385, A186386. %K A186384 nonn %O A186384 1,2 %A A186384 _Clark Kimberling_, Feb 19 2011