cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186387 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=6i and g(j)=j(j+1)/2 (triangular number). Complement of A186388.

This page as a plain text file.
%I A186387 #7 Mar 30 2012 18:57:18
%S A186387 3,6,8,10,12,13,15,17,18,20,21,23,24,26,27,29,30,32,33,34,36,37,39,40,
%T A186387 41,43,44,45,47,48,49,51,52,53,54,56,57,58,60,61,62,63,65,66,67,68,70,
%U A186387 71,72,73,75,76,77,78,80,81,82,83,85,86,87,88,89,91,92
%N A186387 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=6i and g(j)=j(j+1)/2 (triangular number).  Complement of A186388.
%C A186387 See A186350 for a discussion of adjusted joint rank sequences.
%e A186387 First, write
%e A186387 ......6.....12..18....24..30. (6*i)
%e A186387 1..3..6..10...15....21..28... (triangular)
%e A186387 Then replace each number by its rank, where ties are settled by ranking 6i before the triangular:
%e A186387 a=(3,6,8,10,12,13,15,17,...)=A186387
%e A186387 b=(1,2,4,5,7,9,11,14,16,...)=A186388.
%t A186387 (* adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z *)
%t A186387 d=1/2; u=6; v=0; x=1/2; y=1/2; (* 6i and triangular *)
%t A186387 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
%t A186387 a[n_]:=n+Floor[h[n]]; (* rank of u*n+v *)
%t A186387 k[n_]:=(x*n^2+y*n-v+d)/u;
%t A186387 b[n_]:=n+Floor[k[n]]; (* rank of x*n^2+y*n+d *)
%t A186387 Table[a[n], {n, 1, 120}]  (* A186387 *)
%t A186387 Table[b[n], {n, 1, 100}]  (* A186388 *)
%Y A186387 Cf. A186350, A186388, A186389, A186390.
%K A186387 nonn
%O A186387 1,1
%A A186387 _Clark Kimberling_, Feb 19 2011