cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186391 a(n) equals the least sum of the squares of the coefficients in (1 + x^k + x^(2k) + x^p)^n found at sufficiently large p for some fixed k>0.

This page as a plain text file.
%I A186391 #13 Feb 12 2015 04:49:47
%S A186391 1,4,32,340,4096,52704,705956,9717488,136443904,1945097296,
%T A186391 28063032832,408836809088,6004266204964,88779091937488,
%U A186391 1320294416004736,19733192546306640,296219343194357760,4463668854432401280
%N A186391 a(n) equals the least sum of the squares of the coefficients in (1 + x^k + x^(2k) + x^p)^n found at sufficiently large p for some fixed k>0.
%C A186391 Equivalently, a(n) equals the sum of the squares of the coefficients in the polynomial: (1+x+x^2 + x^p)^n for all p>2(n+1).
%C A186391 ...
%C A186391 More generally, let B(x) = Sum_{n>=0} b(n)*x^n/n!^2 such that b(n) is the least sum of the squares of the coefficients in (F(x^k) + t*x^p)^n where F(x) is a finite polynomial in x with degree d and p>(n+1)dk for some fixed k>0,
%C A186391 then B(x) = [Sum_{n>=0} (t^2*x)^n/n!^2]*[Sum_{n>=0} c(n)/n!^2] where c(n) equals the sum of the squares of the coefficients in the polynomial F(x)^n.
%F A186391 (1) a(n) = Sum_{k=0..n} C(n,k)^2*A082758(k).
%F A186391 Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
%F A186391 (2) A(x) = [Sum_{n>=0} x^n/n!^2]*[Sum_{n>=0} A082758(n)*x^n/n!^2]
%F A186391 where A082758(n) is the sum of the squares of the trinomial coefficients in (1+x+x^2)^n.
%F A186391 Recurrence: n^2*(2*n-1)^2*(240*n^5 - 2720*n^4 + 12016*n^3 - 25824*n^2 + 26966*n - 10939)*a(n) = 4*(6000*n^9 - 81920*n^8 + 470480*n^7 - 1486720*n^6 + 2841766*n^5 - 3403995*n^4 + 2557086*n^3 - 1163574*n^2 + 291045*n - 30429)*a(n-1) - 24*(6720*n^9 - 103040*n^8 + 678448*n^7 - 2511512*n^6 + 5740528*n^5 - 8358208*n^4 + 7691502*n^3 - 4262963*n^2 + 1269092*n - 151182)*a(n-2) + 4*(96000*n^9 - 1633280*n^8 + 11993280*n^7 - 49661760*n^6 + 127015344*n^5 - 206357088*n^4 + 210522120*n^3 - 127943860*n^2 + 41074746*n - 5150007)*a(n-3) - 64*(n-3)^2*(4*n - 13)*(4*n - 11)*(240*n^5 - 1520*n^4 + 3536*n^3 - 3696*n^2 + 1686*n - 261)*a(n-4). - _Vaclav Kotesovec_, Feb 12 2015
%F A186391 a(n) ~ 2^(4*n + 1/2) / (sqrt(3) * Pi * n). - _Vaclav Kotesovec_, Feb 12 2015
%e A186391 G.f.: A(x) = 1 + 4*x + 32*x^2/2!^2 + 340*x^3/3!^2 + 4096*x^4/4!^2 +...
%e A186391 The g.f. may be expressed as:
%e A186391 A(x) = [Sum_{n>=0} x^n/n!^2] * C(x) where
%e A186391 C(x)= 1 + 3*x + 19*x^2/2!^2 + 141*x^3/3!^2 + 1107*x^4/4!^2 + 8953*x^5/5!^2 + 73789*x^6/6!^2 +...+ A082758(n)*x^n/n!^2 +...
%t A186391 Table[Sum[Binomial[n,k]^2 * Sum[Binomial[2*k-j,j] * Binomial[2*k, j], {j,0,k}], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Feb 11 2015 *)
%o A186391 (PARI) {a(n)=local(V=Vec((1+x+x^2+x^(2*n+3))^n)); V*V~}
%o A186391 (PARI) {a(n)=sum(k=0,n,binomial(n,k)^2*sum(j=0, k, binomial(2*k-j, j)*binomial(2*k, j)))}
%o A186391 (PARI) {a(n)=n!^2*polcoeff(sum(m=0, n, x^m/m!^2+x*O(x^n)) *sum(m=0, n, sum(k=0, m, binomial(2*m-k, k)*binomial(2*m, k))*x^m/m!^2), n)}
%Y A186391 Cf. A082758, A186392, A186378.
%K A186391 nonn
%O A186391 0,2
%A A186391 _Paul D. Hanna_, Feb 19 2011