cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186392 a(n) equals the least sum of the squares of the coefficients in ((1 + x^k)^3 + x^p)^n found at sufficiently large p for some fixed k>0.

This page as a plain text file.
%I A186392 #12 Feb 12 2015 04:55:07
%S A186392 1,21,1005,57117,3515661,227676321,15287457741,1054718889525,
%T A186392 74310865827597,5323117605120273,386421018984886905,
%U A186392 28357462296640927845,2099749565250183356973,156648556486910137353777
%N A186392 a(n) equals the least sum of the squares of the coefficients in ((1 + x^k)^3 + x^p)^n found at sufficiently large p for some fixed k>0.
%C A186392 Equivalently, a(n) equals the sum of the squares of the coefficients in the polynomial: ((1+x)^3 + x^p)^n for all p>3(n+1).
%C A186392 ...
%C A186392 More generally, let B(x) = Sum_{n>=0} b(n)*x^n/n!^2 such that b(n) is the least sum of the squares of the coefficients in (F(x^k) + t*x^p)^n where F(x) is a finite polynomial in x with degree d and p>(n+1)dk for some fixed k>0,
%C A186392 then B(x) = [Sum_{n>=0} (t^2*x)^n/n!^2]*[Sum_{n>=0} c(n)/n!^2] where c(n) equals the sum of the squares of the coefficients in the polynomial F(x)^n.
%F A186392 (1) a(n) = Sum_{k=0..n} C(n,k)^2*C(6k,3k).
%F A186392 Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then
%F A186392 (2) A(x) = [Sum_{n>=0} x^n/n!^2]*[Sum_{n>=0} (6n)!/(3n)!^2 *x^n/n!^2]
%F A186392 where (6n)!/(3n)!^2 is the sum of the squares of the coefficients in (1+x)^(3n).
%F A186392 Recurrence: n^2*(3*n-2)^2*(3*n-1)^2*(11664000*n^8 - 185457600*n^7 + 1268251200*n^6 - 4872227850*n^5 + 11501613345*n^4 - 17086352076*n^3 + 15601848563*n^2 - 8008019030*n + 1769497668)*a(n) = (125656272000*n^14 - 2377737892800*n^13 + 20176977398400*n^12 - 101636310193650*n^11 + 339033082048335*n^10 - 790997589023868*n^9 + 1328807234532186*n^8 - 1629746362828908*n^7 + 1463401419459585*n^6 - 955188456600918*n^5 + 445022508698326*n^4 - 143136353903096*n^3 + 29975298427288*n^2 - 3656735400000*n + 197437737600)*a(n-1) - 2*(2060573904000*n^14 - 41192487921600*n^13 + 371601043200000*n^12 - 2002776983698050*n^11 + 7194382158658545*n^10 - 18189133596160956*n^9 + 33303386556391095*n^8 - 44736636269608884*n^7 + 44153839934527497*n^6 - 31729853553647838*n^5 + 16260230748029395*n^4 - 5728259846949480*n^3 + 1303148021418356*n^2 - 170502613376352*n + 9707820967872)*a(n-2) + 18*(n-2)^2*(645497424000*n^12 - 11574979185600*n^11 + 91670927428800*n^10 - 422559236833650*n^9 + 1257324245932095*n^8 - 2530974275757936*n^7 + 3511780338639909*n^6 - 3357925240298748*n^5 + 2175657267448355*n^4 - 921464025234426*n^3 + 239290954736149*n^2 - 33846317262624*n + 1986410906748)*a(n-3) - 81*(n-3)^2*(n-2)^2*(140399568000*n^10 - 1953070315200*n^9 + 11498171428800*n^8 - 37500795421650*n^7 + 74520854931765*n^6 - 93517328384172*n^5 + 74333125575977*n^4 - 36536327729802*n^3 + 10492652783974*n^2 - 1569370920528*n + 93953212632)*a(n-4) + 321489*(n-4)^2*(n-3)^2*(n-2)^2*(11664000*n^8 - 92145600*n^7 + 296640000*n^6 - 504146250*n^5 + 489706095*n^4 - 274985196*n^3 + 85944305*n^2 - 13448002*n + 818220)*a(n-5). - _Vaclav Kotesovec_, Feb 12 2015
%F A186392 a(n) ~ 3^(4*n + 5/2) / (16 * Pi * n). - _Vaclav Kotesovec_, Feb 12 2015
%e A186392 G.f.: A(x) = 1 + 21*x + 1005*x^2/2!^2 + 57117*x^3/3!^2 + 3515661*x^4/4!^2 +...
%e A186392 The g.f. may be expressed as:
%e A186392 A(x) = [Sum_{n>=0} x^n/n!^2] * C(x) where
%e A186392 C(x)= 1 + 20*x + 924*x^2/2!^2 + 48620*x^3/3!^2 + 2704156*x^4/4!^2 +...+ (6n)!/(3n)!^2*x^n/n!^2 +...
%t A186392 Table[Sum[Binomial[n,k]^2 * Binomial[6*k,3*k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Feb 11 2015 *)
%o A186392 (PARI) {a(n)=sum(k=0,n,binomial(n,k)^2*(6*k)!/(3*k)!^2)}
%o A186392 (PARI) {a(n)=n!^2*polcoeff(sum(m=0, n, (6*m)!/(3*m)!^2*x^m/m!^2)*sum(m=0, n, x^m/m!^2+x*O(x^n)), n)}
%o A186392 (PARI) {a(n)=local(V=Vec(((1+x)^3+x^(3*n+4))^n)); V*V~}
%Y A186392 Cf. A186378, A186391.
%K A186392 nonn
%O A186392 0,2
%A A186392 _Paul D. Hanna_, Feb 19 2011