A186410 Number of "ON" cells at n-th stage of three-dimensional version of the cellular automaton A183060 using cubes.
0, 1, 6, 11, 32, 37, 58, 79, 180, 185, 206, 227, 328, 349, 450, 551, 1052, 1057, 1078, 1099, 1200, 1221, 1322, 1423, 1924, 1945, 2046, 2147, 2648, 2749, 3250, 3751, 6252, 6257, 6278, 6299, 6400, 6421, 6522, 6623
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 32-33.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
a[n_] := n + (4/5) Sum[5^DigitCount[i, 2, 1], {i, n - 1}]; Array[a, 40, 0] (* Michael De Vlieger, Nov 02 2022 *)
Formula
From Nathaniel Johnston, Mar 14 2011: (Start)
a(n) = n + (4/5)*(Sum_{i=1..n-1} 5^A000120(i)).
a(2^n) = 2^n + (4/5)*(6^n - 1).
(End)
Extensions
More terms from Nathaniel Johnston, Mar 14 2011
Comments