cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186425 Antidiagonal sums of A179748.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 10, 14, 20, 30, 45, 68, 104, 161, 251, 393, 618, 976, 1547, 2459, 3917, 6251, 9993, 15999, 25647, 41157, 66108, 106272, 170961, 275202, 443250, 714265, 1151486, 1857057, 2995991, 4834907, 7804653, 12601553, 20351114, 32872743, 53107823, 85811996, 138674777, 224130364, 362286475
Offset: 1

Views

Author

Mats Granvik, Feb 21 2011

Keywords

Comments

a(n+1)/a(n) tends to the golden ratio. [Note added by Joerg Arndt, Mar 16 2013: this is only a conjecture so far!]
Grows slower than the Fibonacci sequence. More complicated than the Fibonacci sequence.
The divisibility related table A051731 can be described by the recurrence:
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - 1*(Sum_{i=1..k-1} T(n-i,k)).
The silver means can be found as limiting ratios of the antidiagonal sums of the tables described by the following similar recurrences:
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) + 0*(Sum_{i=1..k-1} T(n-i,k)). --> antidiagonal sums limiting ratio tends to the golden ratio, A001622.
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) + 1*(Sum_{i=1..k-1} T(n-i,k)). --> antidiagonal sums limiting ratio tends to the silver ratio, A014176.
T(n,1) = 1, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) + 2*(Sum_{i=1..k-1} T(n-i,k)). --> antidiagonal sums limiting ratio tends to the bronze ratio, A098316
The limiting ratio becomes apparent after the first 275 terms or so of the antidiagonal sums.
The empirical observation that the ratio a(n+1)/a(n) tends to the golden ratio 1.6180339887498... has been verified up to a(1500)/a(1499) which gives the first 65 digits of A001622. - Mats Granvik, Sep 16 2017

Crossrefs

Cf. A001622, A179748, cumulative sums of A186426.

Programs

  • Mathematica
    Clear[a,t]; nn = 58; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0]; a = Table[Total[Table[t[n - k + 1, k], {k, 1, nn}]], {n, 1, nn}]; a (* Mats Granvik, Apr 27 2013 *)