This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186446 #41 Sep 08 2022 08:45:55 %S A186446 1,7,47,315,2111,14147,94807,635355,4257871,28534387,191224967, %T A186446 1281505995,8588092031,57553632227,385699241527,2584787426235, %U A186446 17322113500591,116085219651667,777952310560487,5213495734620075,34938565521219551 %N A186446 Expansion of 1/(1 - 7*x + 2*x^2). %C A186446 The first differences are in A122074. %C A186446 a(n+1) equals the number of words of length n over {0,1,2,3,4,5,6} avoiding 01 and 02. - _Milan Janjic_, Dec 17 2015 %H A186446 Bruno Berselli, <a href="/A186446/b186446.txt">Table of n, a(n) for n = 0..800</a> %H A186446 Tomislav Doslic, <a href="http://dx.doi.org/10.1007/s10910-013-0167-2">Planar polycyclic graphs and their Tutte polynomials</a>, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. %H A186446 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-2). %F A186446 G.f.: 1/(1-7*x+2*x^2). %F A186446 a(n) = ((7+sqrt(41))^(1+n)-(7-sqrt(41))^(1+n))/(2^(1+n)*sqrt(41)). %F A186446 a(n) = 7*a(n-1)-2*a(n-2), with a(0)=1, a(1)=7. %t A186446 CoefficientList[Series[1 / (1 - 7 x + 2 x^2), {x, 0, 20}], x] (* _Vincenzo Librandi_, Aug 19 2013 *) %t A186446 LinearRecurrence[{7,-2},{1,7},30] (* _Harvey P. Dale_, Aug 06 2017 *) %o A186446 (Magma) m:=21; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-7*x+2*x^2))); %o A186446 (Magma) I:=[1,7]; [n le 2 select I[n] else 7*Self(n-1)-2*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Aug 19 2013 %o A186446 (PARI) Vec(1/(1-7*x+2*x^2) + O(x^100)) \\ _Altug Alkan_, Dec 17 2015 %Y A186446 For similar closed formulas: A015446 [((1+sqrt(41))^(1+n)-(1-sqrt(41))^(1+n))/(2^(1+n)*sqrt(41))], A015525 [((3+sqrt(41))^n-(3-sqrt(41))^n)/(2^n*sqrt(41))], A015537 [((5+sqrt(41))^n-(5-sqrt(41))^n)/(2^n*sqrt(41))], A178869 [((9+sqrt(41))^n-(9-sqrt(41))^n)/(2^n*sqrt(41))]. %Y A186446 Same recurrence as in A122074, A003771. %K A186446 nonn,easy %O A186446 0,2 %A A186446 _Bruno Berselli_, Feb 21 2011