cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A186454 Number of (n+1) X 2 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

16, 21, 42, 61, 106, 151, 245, 359, 567, 840, 1301, 1941, 2977, 4465, 6810, 10247, 15577, 23487, 35635, 53800, 81533, 123193, 186569, 282037, 426954, 645623, 977117, 1477831, 2236287, 3382632, 5118213, 7742397, 11714273, 17721097, 26811194
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 1 of A186462.

Examples

			Some solutions for 3 X 2:
..1..0....1..0....1..0....0..1....0..0....1..0....1..0....0..0....0..0....1..0
..1..0....0..0....0..1....0..1....1..0....0..0....0..1....0..0....1..0....1..0
..0..1....0..1....1..0....0..1....0..1....0..0....0..0....0..0....1..1....1..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>8.
Empirical g.f.: x*(16 - 11*x + 9*x^3 - 6*x^4 - 3*x^5 + 2*x^6 + x^7) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Feb 28 2018

A186453 Number of (n+1)X(n+1) binary arrays with every 2X2 subblock commuting with each of its horizontal and vertical 2X2 subblock neighbors.

Original entry on oeis.org

16, 30, 111, 309, 797, 1693, 4121, 9477, 22933, 52197, 122109, 277217, 642629, 1463845, 3375245, 7698781, 17693113, 40404005, 92697797, 211861205, 485587357, 1110399969, 2543583205, 5818446165, 13323806077, 30484799837, 69794079385
Offset: 1

Views

Author

R. H. Hardin Feb 22 2011

Keywords

Comments

Diagonal of A186462

Examples

			Some solutions for 3X3
..1..1..1....0..0..0....0..0..0....0..0..0....0..1..0....1..0..0....1..0..1
..1..1..1....0..0..0....1..0..0....0..0..0....1..0..1....1..0..0....0..1..0
..1..1..1....1..1..1....0..1..1....0..0..1....0..1..0....1..0..0....1..0..1
		

A186455 Number of (n+1) X 3 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

21, 30, 51, 88, 128, 197, 292, 457, 688, 1058, 1589, 2424, 3651, 5552, 8376, 12709, 19192, 29085, 43952, 66562, 100629, 152332, 230359, 348632, 527296, 797909, 1206940, 1826193, 2762528, 4179698, 6322981, 9566352, 14472171, 21895248
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 2 of A186462.

Examples

			Some solutions for 5 X 3:
..1..1..1....0..0..0....1..0..1....0..1..0....0..0..1....1..0..0....0..0..0
..0..0..0....0..0..0....0..1..0....0..0..1....0..0..0....1..0..0....1..0..0
..0..0..0....0..0..0....0..0..1....0..0..0....1..0..0....1..0..0....0..1..0
..0..0..0....1..0..0....0..0..1....1..0..0....0..1..0....1..0..0....1..0..1
..0..0..0....0..1..1....0..0..1....0..1..1....1..0..1....0..1..1....0..1..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>8.
Empirical g.f.: x*(21 - 12*x - 9*x^2 + 28*x^3 - 30*x^4 + 4*x^5 + 2*x^6 + 4*x^7) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 17 2018

A186456 Number of (n+1) X 4 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

42, 51, 111, 162, 270, 362, 590, 846, 1362, 1998, 3122, 4622, 7126, 10642, 16286, 24442, 37230, 56046, 85138, 128414, 194754, 294094, 445590, 673362, 1019630, 1541514, 2333390, 3528654, 5340178, 8076974, 12221906, 18487374, 27972502
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 3 of A186462.

Examples

			Some solutions for 3 X 4:
..1..0..0..0....1..1..0..1....0..0..0..0....0..0..0..1....1..0..0..1
..0..0..0..0....1..0..1..0....1..0..0..0....0..0..0..0....1..0..0..0
..0..0..0..0....0..1..0..1....1..1..0..0....1..0..0..0....1..0..0..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>9.
Empirical g.f.: x*(42 - 33*x + 9*x^2 + 24*x^3 - 36*x^4 - 16*x^5 + 19*x^6 - 7*x^7 + 16*x^8) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 17 2018

A186457 Number of (n+1) X 5 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

61, 88, 162, 309, 449, 673, 945, 1493, 2201, 3473, 5177, 7993, 11949, 18289, 27473, 41857, 63041, 95765, 144473, 219105, 330905, 501353, 757677, 1147281, 1734561, 2625569, 3970577, 6008917, 9088537, 13752497, 20802745, 31475673, 47614509
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 4 of A186462.

Examples

			Some solutions for 3 X 5:
..0..0..0..0..0....1..0..0..0..0....1..0..0..1..1....1..0..0..0..0
..0..0..0..0..0....0..1..0..0..0....0..0..0..0..1....1..0..0..0..0
..1..0..0..0..0....1..0..1..0..0....0..0..0..0..0....0..1..0..0..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>10.
Empirical g.f.: x*(61 - 34*x - 14*x^2 + 107*x^3 - 115*x^4 - 16*x^5 - 19*x^6 + 45*x^7 - 28*x^8 + 64*x^9) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 17 2018

A186458 Number of (n+1) X 6 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

106, 128, 270, 449, 797, 1061, 1681, 2285, 3681, 5281, 8437, 12401, 19317, 28641, 44073, 65877, 100705, 151229, 230209, 346689, 526453, 794241, 1204293, 1818849, 2755433, 4164309, 6305265, 9533069, 14429537, 21821729, 33023541, 49948881
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 5 of A186462.

Examples

			Some solutions for 3 X 6:
..1..1..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..0....0..0..1..0..1..0
..0..0..1..0..0..0....0..0..0..0..0..1....1..0..0..0..0..0....0..0..0..1..0..1
..0..0..0..1..1..1....0..0..0..0..0..0....1..1..0..0..0..1....0..0..0..0..1..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>11.
Empirical g.f.: x*(106 - 84*x + 14*x^2 + 121*x^3 - 57*x^4 - 143*x^5 + 45*x^6 - 111*x^7 + 88*x^8 - 44*x^9 + 144*x^10) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 17 2018

A186459 Number of (n+1) X 7 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

151, 197, 362, 673, 1061, 1693, 2377, 3677, 5073, 7977, 11533, 18221, 26957, 41729, 62105, 95205, 142645, 217581, 327233, 497481, 749885, 1137821, 1717565, 2603089, 3932825, 5956277, 9003685, 13630333, 20610673, 31193705, 47177837, 71391309
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 6 of A186462.

Examples

			Some solutions for 3 X 7:
..1..1..0..0..0..0..1....0..1..0..1..0..0..0....1..1..1..1..1..1..1
..0..0..1..0..0..0..0....1..0..1..0..1..0..0....0..0..0..0..0..0..0
..0..0..0..1..0..0..0....0..1..0..1..0..1..1....0..0..0..0..0..0..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>12.
Empirical g.f.: x*(151 - 105*x - 32*x^2 + 251*x^3 - 193*x^4 + 52*x^5 - 190*x^6 + 61*x^7 - 344*x^8 + 260*x^9 - 128*x^10 + 324*x^11) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 17 2018

A186460 Number of (n+1) X 8 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

245, 292, 590, 945, 1681, 2377, 4121, 5633, 8893, 11977, 19037, 27133, 43249, 63485, 98801, 146333, 225061, 336241, 513933, 771609, 1174525, 1768605, 2685617, 4051469, 6143169, 9277789, 14055269, 21241521, 32162333, 48626537, 73602781
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 7 of A186462.

Examples

			Some solutions for 3 X 8:
..0..1..0..0..0..0..0..1....1..0..0..0..1..0..1..0....1..0..0..0..0..0..0..0
..1..0..1..0..0..0..0..0....1..0..0..0..0..1..0..1....1..0..0..0..0..0..0..0
..0..1..0..1..0..0..0..0....1..0..0..0..0..0..1..0....1..0..0..0..0..0..0..0
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>13.
Empirical g.f.: x*(245 - 198*x + 6*x^2 + 255*x^3 - 115*x^4 - 144*x^5 + 369*x^6 - 547*x^7 - 36*x^8 - 640*x^9 + 484*x^10 - 300*x^11 + 784*x^12) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 18 2018

A186461 Number of (n+1) X 9 binary arrays with every 2 X 2 subblock commuting with each of its horizontal and vertical 2 X 2 subblock neighbors.

Original entry on oeis.org

359, 457, 846, 1493, 2285, 3677, 5633, 9477, 13245, 20281, 27573, 43177, 62025, 98157, 144825, 224381, 333321, 511281, 765293, 1167881, 1755461, 2669577, 4022697, 6104941, 9213769, 13965837, 21097609, 31954865, 48300653, 73123993
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2011

Keywords

Comments

Column 8 of A186462.

Examples

			Some solutions for 3 X 9:
..0..1..0..1..0..0..0..0..0....1..0..0..1..0..0..0..0..0
..0..0..1..0..1..0..0..0..0....0..0..0..0..1..0..0..0..0
..0..0..0..1..0..1..1..1..1....0..0..0..0..0..1..0..0..1
		

Crossrefs

Cf. A186462.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) for n>14.
Empirical g.f.: x*(359 - 261*x - 68*x^2 + 519*x^3 - 505*x^4 + 244*x^5 + 30*x^6 + 641*x^7 - 1432*x^8 - 12*x^9 - 1624*x^10 + 1200*x^11 - 780*x^12 + 1936*x^13) / ((1 - x)*(1 - x - x^2 + x^3 - x^4)). - Colin Barker, Apr 18 2018
Showing 1-9 of 9 results.