This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186491 #39 Sep 29 2023 14:24:57 %S A186491 1,2,28,1112,87568,11447072,2239273408,612359887232,223061763490048, %T A186491 104399900177326592,61049165415292607488,43617245341775265585152, %U A186491 37385513306142843500105728,37862584188750782065354022912 %N A186491 Counts a family of permutations occurring in the study of squeezed states of the simple harmonic oscillator. %C A186491 The sequence a(n), with the convention a(0) = 1, enumerates permutations p(1)p(2)...p(4*n) in the symmetric group on 4*n letters having the following properties: %C A186491 1) The permutation can be written as a product of disjoint two cycles. %C A186491 2) For i = 1,...,2*n, positions 2*i-1 and 2*i are either both ascents (labeled A) or both descents (labeled D). %C A186491 The set of permutations satisfying condition (1) forms a subgroup of Symm(4*n) of order A001147(4*n). %C A186491 Here are some examples of permutations (written in cycle form) in Symm(8), satisfying these conditions, together with their ascent-descent labelings. %C A186491 ... (14)(23)(57)(68) of type AADDAADD; %C A186491 ... (15)(26)(37)(48) of type AAAADDDD. %C A186491 Since the permutations being considered consist of disjoint 2-cycles their ascent-descent labelings must have an equal number of A's and D's. %C A186491 Further examples can be found in the Example section below. %C A186491 This family of permutations have arisen in the study of squeezed states %C A186491 of the simple harmonic oscillator [Sukumar and Hodges]. %C A186491 See A186492 for a recursive triangle to compute this sequence. %H A186491 Jitender Singh, <a href="http://arxiv.org/abs/1402.0065">On an arithmetic convolution</a>, arXiv:1402.0065 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Singh/singh8.html">J. Int. Seq. 17 (2014) # 14.6.7</a>. %H A186491 C. V. Sukumar and A. Hodges, <a href="https://doi.org/10.1098/rspa.2007.0003">Quantum algebras and parity-dependent spectra</a>, Proc. R. Soc. A (2007) 463. %F A186491 GENERATING FUNCTION %F A186491 (1)... sqrt(sec(2*x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! %F A186491 = 1 + 2*x^2/2! + 28*x^4/4! + 1112*x^6/6! + .... %F A186491 Compare with the e.g.f. Of A000364. %F A186491 O.g.f. as a continued fraction: 1/(1-2*x/(1-12*x/(1-30*x/(...-2*n*(2*n-1)*x/(1-...))))) = 1 + 2*x + 28*x^2 + 1112*x^3 + .... %F A186491 From _Sergei N. Gladkovskii_, Oct 23 2012: (Start) %F A186491 G.f.: 1/U(0) where U(k) = 1 - (4*k+1)*(4*k+2)*x/( 1 - (4*k+3)*(4*k+4)*x/U(k+1)); (continued fraction, 2-step). %F A186491 G.f.: 1/S(0) where S(k) = 1 - 2*x*(16*k^2 + 4*k + 1) - 8*x^2*(k+1)*(2*k+1)*(4*k+1)*(4*k+3)/S(k+1); (continued fraction, 1-step). %F A186491 (End) %F A186491 Let A(x) = Sum_{n>=0} a(n)*x^n = 1/T(0) where T(k)= 1 - (2*k+1)*(2*k+2)*x^2/T(k+1) -(continued fraction, 1-step),- then sqrt(sec(2*x)) = Sum_{n>=0} a(n)*x^n/n!. - _Sergei N. Gladkovskii_, Oct 25 2012 %F A186491 G.f.: 1/S(0) where S(k)= 1 - (2*k+1)*(2*k+2)*x /S(k+1); (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Oct 26 2012 %F A186491 G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)*(2*k+2)/(x*(2*k+1)*(2*k+2) - 1/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Oct 09 2013 %F A186491 For n > 0, a(n) = Sum_{k=1..n} a(n-k)*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k. - _Tani Akinari_, Sep 19 2023. %e A186491 a(1)=2: %e A186491 The two permutations in Symm(4) satisfying the conditions are %e A186491 ... (13)(24) of type AADD %e A186491 ... (14)(23) of type AADD. %e A186491 a(2)=28: %e A186491 Clearly, the ascent-descent structure of one of our permutations must start with an AA and finish with a DD so the two possible types are AAAADDDD and AADDAADD. %e A186491 There are 4!=24 permutations of type AAAADDDD coming from the bijections of {1,2,3,4} onto {5,6,7,8}. %e A186491 There are 2*2 = 4 permutations of the remaining type AADDAADD, namely %e A186491 ... (13)(24)(57)(68) %e A186491 ... (13)(24)(58)(67) %e A186491 ... (14)(23)(57)(68) %e A186491 ... (14)(23)(58)(67). %p A186491 G:= sqrt(sec(2*x)): Gser := series(G, x = 0,32): %p A186491 seq((2*n)!*coeff(Gser,x^(2*n)), n = 1..15); %p A186491 # Alternative, using the Singh transformation 'g' from Maple in A126156: %p A186491 a := n -> (-4)^n*g(euler, 2*n); %p A186491 seq(a(n), n = 0..13); # _Peter Luschny_, Sep 29 2023 %o A186491 (Maxima) a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k,k,1,n); %o A186491 makelist(a[n],n,0,20); /* _Tani Akinari_, Sep 19 2023 */ %Y A186491 Cf. A000364, A186492, A126156. %K A186491 nonn,easy %O A186491 0,2 %A A186491 _Peter Bala_, Feb 22 2011