This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186495 #14 Sep 25 2021 03:42:51 %S A186495 3,4,6,7,9,10,12,13,14,15,17,18,19,21,22,23,24,25,27,28,29,30,31,33, %T A186495 34,35,36,37,39,40,41,42,43,44,45,47,48,49,50,51,52,54,55,56,57,58,59, %U A186495 60,61,63,64,65,66,67,68,69,70,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,108,109,110,111,112,114,115,116,117,118,119,120,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,138,139,140 %N A186495 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=5i (A008587) and g(j)=j-th pentagonal number (A000326). Complement of A186496. %e A186495 First, write %e A186495 ...5..10..15..20..25..30..35..40... (5i), %e A186495 1..5......12......22............35..(pentagonal numbers). %e A186495 Then replace each number by its rank, where ties are settled by ranking 5i after the pentagonal number: %e A186495 a=(3,4,6,7,9,10,12,13,14,15,17,...)=A186495, %e A186495 b=(1,2,5,8,11,16,20,26,32,38,46,..)=A186496. %t A186495 (* Adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z. *) %t A186495 d=-1/2; u=5; v=0; x=3/2; y=-1/2; %t A186495 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x); %t A186495 a[n_]:=n+Floor[h[n]]; %t A186495 k[n_]:=(x*n^2+y*n-v+d)/u; %t A186495 b[n_]:=n+Floor[k[n]]; %t A186495 Table[a[n],{n,1,120}] (* A186495 *) %t A186495 Table[b[n],{n,1,100}] (* A186496 *) %Y A186495 Cf. A000326, A008587, A186350, A186493, A186494, A186496. %K A186495 nonn %O A186495 1,1 %A A186495 _Clark Kimberling_, Feb 22 2011