cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186497 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=3i-2 and g(j)=j-th triangular number. Complement of A186498.

This page as a plain text file.
%I A186497 #10 Apr 09 2015 15:02:38
%S A186497 1,4,6,7,9,11,12,14,15,16,18,19,21,22,23,25,26,27,28,30,31,32,34,35,
%T A186497 36,37,39,40,41,42,43,45,46,47,48,50,51,52,53,54,56,57,58,59,60,61,63,
%U A186497 64,65,66,67,69,70,71,72,73,74,76,77,78,79,80,81,82,84,85,86,87,88,89,91,92,93,94,95,96,97,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131,132,133,135,136,137,138,139,140,141,142,144,145,146
%N A186497 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=3i-2 and g(j)=j-th triangular number.  Complement of A186498.
%C A186497 See A186350 for a discussion of adjusted joint rank sequences.
%e A186497 First, write
%e A186497 1..4..7.10..13..16..19..22..25..28..31. (3i-2),
%e A186497 1.3..6..10....15.......21.......28.....(j(j+1)/2).
%e A186497 Then replace each number by its rank, where ties are settled by ranking 3i-2 before j(j+1)/2:
%e A186497 a=(1,4,6,7,9,11,12,14,15,16,18,...)=A186497,
%e A186497 b=(2,3,5,8,10,13,17,20,24,29,33,..)=A186498.
%t A186497 (* Adjusted joint rank sequences a and b, using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2+y*n+z. *)
%t A186497 d=1/2; u=3; v=-2; x=1/2; y=1/2;
%t A186497 h[n_]:=(-y+(4x(u*n+v-d)+y^2)^(1/2))/(2x);
%t A186497 a[n_]:=n+Floor[h[n]];
%t A186497 k[n_]:=(x*n^2+y*n-v+d)/u;
%t A186497 b[n_]:=n+Floor[k[n]];
%t A186497 Table[a[n],{n,1,120}]  (* A186497 *)
%t A186497 Table[b[n],{n,1,100}]  (* A186498 *)
%Y A186497 Cf. A186350, A186498, A186499, A186500.
%K A186497 nonn
%O A186497 1,2
%A A186497 _Clark Kimberling_, Feb 22 2011