cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186515 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=4+5j^2. Complement of A186516.

This page as a plain text file.
%I A186515 #6 Mar 30 2012 18:57:19
%S A186515 1,2,4,5,7,8,10,11,12,14,15,17,18,20,21,23,24,26,27,28,30,31,33,34,36,
%T A186515 37,39,40,41,43,44,46,47,49,50,52,53,54,56,57,59,60,62,63,65,66,68,69,
%U A186515 70,72,73,75,76,78,79,81,82,83,85,86,88,89,91,92,94,95,96,98,99,101,102,104,105,107,108,109,111,112,114,115,117,118,120,121,123,124,125,127,128,130,131,133,134,136,137,138,140,141,143,144
%N A186515 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=4+5j^2.  Complement of A186516.
%C A186515 See A186219 for a discussion of adjusted joint rank sequences.
%C A186515 The pairs (i,j) for which i^2=4+5j^2 are (L(2h),F(2h)), where L=A000032 (Lucas numbers) and F=A000045 (Fibonacci numbers).
%F A186515 a(n)=n+floor(sqrt((n^2)/5-7/10))=A186515(n).
%F A186515 b(n)=n+floor(sqrt(5n^2+7/2))=A186516(n).
%e A186515 First, write
%e A186515 1..4..9..16..25..36..49..... (i^2)
%e A186515 ......9.....24.......49.. (4+5j^2)
%e A186515 Then replace each number by its rank, where ties are settled by ranking i^2 after 4+5j^2:
%e A186515 a=(1,2,4,5,7,8,10,11,12,14,15,17,..)=A186515
%e A186515 b=(3,6,9,13,16,19,22,25,29,32,35,..)=A186516.
%t A186515 (* adjusted joint rank sequences a and b, using general formula for ranking ui^2+vi+w and xj^2+yj+z *)
%t A186515 d = -1/2; u = 1; v = 0; w = 0; x = 5; y = 0; z = 4;
%t A186515 h[n_] := -y + (4 x (u*n^2 + v*n + w - z - d) + y^2)^(1/2);
%t A186515 a[n_] := n + Floor[h[n]/(2 x)];
%t A186515 k[n_] := -v + (4 u (x*n^2 + y*n + z - w + d) + v^2)^(1/2);
%t A186515 b[n_] := n + Floor[k[n]/(2 u)];
%t A186515 Table[a[n], {n, 1, 100}]  (* A186515 *)
%t A186515 Table[b[n], {n, 1, 100}]  (* A186516 *)
%Y A186515 Cf. A186219, A186513, A186514, A186516.
%K A186515 nonn
%O A186515 1,2
%A A186515 _Clark Kimberling_, Feb 22 2011