cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186539 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=-2+3j^2. Complement of A186540.

This page as a plain text file.
%I A186539 #10 May 18 2020 12:05:56
%S A186539 1,3,4,6,7,9,11,12,14,15,17,18,20,22,23,25,26,28,29,31,33,34,36,37,39,
%T A186539 41,42,44,45,47,48,50,52,53,55,56,58,59,61,63,64,66,67,69,70,72,74,75,
%U A186539 77,78,80,82,83,85,86,88,89,91,93,94,96,97,99,100,102,104,105,107,108,110,111,113,115,116,118,119,121,123,124,126,127,129,130,132,134,135,137,138,140,141,143,145,146,148,149,151,153,154,156,157
%N A186539 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=-2+3j^2.  Complement of A186540.
%C A186539 See A186219 for a discussion of adjusted joint rank sequences.
%C A186539 Differs from A059555 at n=97, 123, 194, 220, 246, ... - _R. J. Mathar_, May 18 2020
%F A186539 a(n)=n+floor(sqrt((1/3)n^2+1/24))=A186539(n).
%F A186539 b(n)=n+floor(sqrt(3n^2-3/2))=A186540(n).
%e A186539 First, write
%e A186539 1..4..9..16..25..36..49.... (i^2)
%e A186539 .......10....25.....46.. (-2+3j^2)
%e A186539 Then replace each number by its rank, where ties are settled by ranking i^2 before -2+3j^2:
%e A186539 a=(1,3,4,6,7,9,11,12,14,15,17,18,..)=A186539
%e A186539 b=(2,5,8,10,13,16,19,21,24,27,30...)=A186540.
%t A186539 (* adjusted joint rank sequences a and b, using general formula for ranking ui^2+vi+w and xj^2+yj+z *)
%t A186539 d = 1/2; u = 1; v = 0; w = 0; x = 3; y = 0; z = -2;
%t A186539 h[n_] := -y + (4 x (u*n^2 + v*n + w - z - d) + y^2)^(1/2);
%t A186539 a[n_] := n + Floor[h[n]/(2 x)];
%t A186539 k[n_] := -v + (4 u (x*n^2 + y*n + z - w + d) + v^2)^(1/2);
%t A186539 b[n_] := n + Floor[k[n]/(2 u)];
%t A186539 Table[a[n], {n, 1, 100}]  (* A186539 *)
%t A186539 Table[b[n], {n, 1, 100}]  (* A186540 *)
%Y A186539 Cf. A186219, A186540, A186541, A186542.
%K A186539 nonn
%O A186539 1,2
%A A186539 _Clark Kimberling_, Feb 23 2011