This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186539 #10 May 18 2020 12:05:56 %S A186539 1,3,4,6,7,9,11,12,14,15,17,18,20,22,23,25,26,28,29,31,33,34,36,37,39, %T A186539 41,42,44,45,47,48,50,52,53,55,56,58,59,61,63,64,66,67,69,70,72,74,75, %U A186539 77,78,80,82,83,85,86,88,89,91,93,94,96,97,99,100,102,104,105,107,108,110,111,113,115,116,118,119,121,123,124,126,127,129,130,132,134,135,137,138,140,141,143,145,146,148,149,151,153,154,156,157 %N A186539 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f(i)=i^2 and g(j)=-2+3j^2. Complement of A186540. %C A186539 See A186219 for a discussion of adjusted joint rank sequences. %C A186539 Differs from A059555 at n=97, 123, 194, 220, 246, ... - _R. J. Mathar_, May 18 2020 %F A186539 a(n)=n+floor(sqrt((1/3)n^2+1/24))=A186539(n). %F A186539 b(n)=n+floor(sqrt(3n^2-3/2))=A186540(n). %e A186539 First, write %e A186539 1..4..9..16..25..36..49.... (i^2) %e A186539 .......10....25.....46.. (-2+3j^2) %e A186539 Then replace each number by its rank, where ties are settled by ranking i^2 before -2+3j^2: %e A186539 a=(1,3,4,6,7,9,11,12,14,15,17,18,..)=A186539 %e A186539 b=(2,5,8,10,13,16,19,21,24,27,30...)=A186540. %t A186539 (* adjusted joint rank sequences a and b, using general formula for ranking ui^2+vi+w and xj^2+yj+z *) %t A186539 d = 1/2; u = 1; v = 0; w = 0; x = 3; y = 0; z = -2; %t A186539 h[n_] := -y + (4 x (u*n^2 + v*n + w - z - d) + y^2)^(1/2); %t A186539 a[n_] := n + Floor[h[n]/(2 x)]; %t A186539 k[n_] := -v + (4 u (x*n^2 + y*n + z - w + d) + v^2)^(1/2); %t A186539 b[n_] := n + Floor[k[n]/(2 u)]; %t A186539 Table[a[n], {n, 1, 100}] (* A186539 *) %t A186539 Table[b[n], {n, 1, 100}] (* A186540 *) %Y A186539 Cf. A186219, A186540, A186541, A186542. %K A186539 nonn %O A186539 1,2 %A A186539 _Clark Kimberling_, Feb 23 2011