This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186637 #12 Sep 12 2024 14:37:30 %S A186637 64,216,729,1000,1024,2744,3375,7776,9261,10648,15625,17576,35937, %T A186637 39304,42875,54872,59049,59319,65536,97336,100000,117649,132651, %U A186637 166375,185193,195112,238328,262144,274625,328509,405224,456533,537824,551368,614125,636056,658503,753571,759375,804357,830584,857375 %N A186637 Semiprime powers with special exponents: k^(j-1) where both j and k are arbitrary semiprime numbers. %C A186637 Semiprime analog of A036454: prime powers with special exponents: q^(p-1) where both p and q are arbitrary prime numbers. %F A186637 {a(n)} = {A001358(i) ^ A186621(j)}. %F A186637 {a(n)} = {a^b where a and b are elements of A001358} = {(p*q)^((r*s)-1) for primes p, q, r, s, not necessarily distinct}. %e A186637 a(1) = smallest semiprime to power of (smallest semiprime - 1) = 4^(4-1) = 4^3 = 64. %o A186637 (Python) %o A186637 from math import isqrt %o A186637 from sympy import primepi, primerange, integer_nthroot, factorint %o A186637 def A186637(n): %o A186637 def A072000(n): return int(-((t:=primepi(s:=isqrt(n)))*(t-1)>>1)+sum(primepi(n//p) for p in primerange(s+1))) %o A186637 def f(x): return int(n+x-sum(A072000(integer_nthroot(x, p-1)[0]) for p in range(4,x.bit_length()+1) if sum(factorint(p).values())==2)) %o A186637 def bisection(f,kmin=0,kmax=1): %o A186637 while f(kmax) > kmax: kmax <<= 1 %o A186637 while kmax-kmin > 1: %o A186637 kmid = kmax+kmin>>1 %o A186637 if f(kmid) <= kmid: %o A186637 kmax = kmid %o A186637 else: %o A186637 kmin = kmid %o A186637 return kmax %o A186637 return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024 %Y A186637 Cf. A001358, A036454, A113877, A186621. %K A186637 nonn,easy %O A186637 1,1 %A A186637 _Jonathan Vos Post_, Feb 24 2011