This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186640 #15 Oct 01 2012 15:37:32 %S A186640 11,13,73,89,101,103,127,137,139,157,197,211,241,251,281,293,331,349, %T A186640 353,373,401,409,421,449,457,463,521,557,569,601,607,617,641,653,661, %U A186640 673,677,691,739,761,769,809,829,859,877,881,929,967,997,1009,1049,1061 %N A186640 Primes p such that the decimal expansion of 1/p has a periodic part of even length, but are not cyclic numbers (A001913). %H A186640 T. D. Noe, <a href="/A186640/b186640.txt">Table of n, a(n) for n = 1..1000</a> %F A186640 p in A028416, but not A001913. %p A186640 f1_d := proc(n) local st, period: %p A186640 st := ithprime(n): %p A186640 period := numtheory[order](10,st): %p A186640 if (modp(period,2) = 0) then %p A186640 if (st-1 <> period) then %p A186640 RETURN(st): %p A186640 fi: %p A186640 fi: end: seq(f1_d(n), n=1..200); %t A186640 Select[Prime[Range[200]], EvenQ[Length[RealDigits[1/#][[1, 1]]]] && MultiplicativeOrder[10, #] != # - 1 &] (* _T. D. Noe_, Oct 01 2012 *) %o A186640 (PARI) is(p)=if(p>9 && isprime(p), my(o=znorder(Mod(10, p))); o%2==0 && o+1!=p, 0) \\ _Charles R Greathouse IV_, Oct 01 2012 %Y A186640 Cf. A028416. %K A186640 nonn,base %O A186640 1,1 %A A186640 _Jani Melik_, Feb 24 2011