This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186716 #38 Jun 03 2023 09:30:17 %S A186716 1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0, %T A186716 0,1,1,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,5,0,0,1,0,0,0,1,32,0,0,1,0,0,0,1, %U A186716 385,0,0,1,0,0,0,1,7574,0,0,1,0,0,0,1,181227,1,0,0,1,0,0,0,0,1 %N A186716 Irregular triangle C(n,k): the number of connected k-regular graphs on n vertices having girth at least six. %C A186716 Other than the first two rows, each row begins with 0, 0, 1. %D A186716 M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146. %H A186716 Jason Kimberley, <a href="/A186716/b186716.txt">Rows n = 1..37 of triangle, flattened</a> %H A186716 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/cubic">Cubic graphs</a> %H A186716 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_6">Connected regular graphs with girth at least 6</a> %H A186716 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %H A186716 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a> %H A186716 M. Meringer, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G">Fast generation of regular graphs and construction of cages</a>, J. Graph Theory 30 (2) (1999) 137-146. %e A186716 1; %e A186716 0, 1; %e A186716 0, 0; %e A186716 0, 0; %e A186716 0, 0; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1; %e A186716 0, 0, 1, 1; %e A186716 0, 0, 1, 0; %e A186716 0, 0, 1, 1; %e A186716 0, 0, 1, 0; %e A186716 0, 0, 1, 5; %e A186716 0, 0, 1, 0; %e A186716 0, 0, 1, 32; %e A186716 0, 0, 1, 0; %e A186716 0, 0, 1, 385; %e A186716 0, 0, 1, 0; %e A186716 0, 0, 1, 7574; %e A186716 0, 0, 1, 0; %e A186716 0, 0, 1, 181227, 1; %e A186716 0, 0, 1, 0, 0; %e A186716 0, 0, 1, 4624501, 1; %e A186716 0, 0, 1, 0, 0; %e A186716 0, 0, 1, 122090544, 4; %e A186716 0, 0, 1, 0, 0; %e A186716 0, 0, 1, 3328929954, 19; %e A186716 0, 0, 1, 0, 0; %e A186716 0, 0, 1, 93990692595, 1272; %e A186716 0, 0, 1, 0, 25; %e A186716 0, 0, 1, 2754222605376, 494031; %e A186716 0, 0, 1, 0, 13504; %Y A186716 Connected k-regular simple graphs with girth at least 6: A186726 (any k), this sequence (triangle); specific k: A185116 (k=2), A014374 (k=3), A058348 (k=4). %Y A186716 Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), A186715 (g=5), this sequence (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9). %Y A186716 Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth exactly g: A186733 (g=3), A186734 (g=4). %K A186716 nonn,hard,tabf %O A186716 1,53 %A A186716 _Jason Kimberley_, Nov 23 2011 %E A186716 C(36,3) from House of Graphs via _Jason Kimberley_, May 21 2017