This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186717 #16 May 01 2014 02:39:58 %S A186717 1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0, %T A186717 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0, %U A186717 1,0,0,0,1,3,0,0,1,0,0,0,1,21,0,0,1,0,0,0,1,546,0,0,1,0,0,0,1,30368 %N A186717 Irregular triangle C(n,k): the number of connected k-regular graphs on n vertices having girth at least seven. %H A186717 Jason Kimberley, <a href="/A186717/b186717.txt">Table of i, a(i) for i = 1..126 (n = 1..39)</a> %H A186717 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_7">Connected regular graphs with girth at least 7</a> %H A186717 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %e A186717 1; %e A186717 0, 1; %e A186717 0, 0; %e A186717 0, 0; %e A186717 0, 0; %e A186717 0, 0; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1; %e A186717 0, 0, 1, 1; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 3; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 21; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 546; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 30368; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 1782840; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 95079083; %e A186717 0, 0, 1, 0; %e A186717 0, 0, 1, 4686063120; %e A186717 0, 0, 1, 0; %Y A186717 Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), this sequence (g=7), A186718 (g=8), A186719 (g=9). %Y A186717 Connected k-regular simple graphs with girth at least 7: A186727 (any k), this sequence (triangle); specific k: A185117 (k=2), A014375 (k=3). %Y A186717 Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth exactly g: A186733 (g=3), A186734 (g=4). %K A186717 nonn,hard,tabf %O A186717 1,74 %A A186717 _Jason Kimberley_, Nov 28 2011