cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186719 Irregular triangle C(n,k): number of connected k-regular simple graphs on n vertices with girth at least nine.

This page as a plain text file.
%I A186719 #14 May 01 2014 02:39:58
%S A186719 1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
%T A186719 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
%U A186719 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1
%N A186719 Irregular triangle C(n,k): number of connected k-regular simple graphs on n vertices with girth at least nine.
%H A186719 Jason Kimberley, <a href="/A186719/b186719.txt">Table of i, a(i) for i = 1..166 (n = 1..58)</a>
%H A186719 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%e A186719 1;
%e A186719 0, 1;
%e A186719 0, 0;
%e A186719 0, 0;
%e A186719 0, 0;
%e A186719 0, 0;
%e A186719 0, 0;
%e A186719 0, 0;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1;
%e A186719 0, 0, 1, 18;
%Y A186719 Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), this sequence (g=9).
%Y A186719 Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth exactly g: A186733 (g=3), A186734 (g=4).
%Y A186719 Connected k-regular simple graphs with girth at least 9: A186729 (all k), this sequence (triangular array), A185119 (k=2).
%K A186719 nonn,hard,tabf
%O A186719 1,166
%A A186719 _Jason Kimberley_, Nov 29 2011