A186720 As p runs through the primes, sequence gives denominator of Sum_{k=1..p-1} 1/k^2.
1, 4, 144, 3600, 1270080, 153679680, 519437318400, 150117385017600, 221193371393280, 6450247552370862240000, 5424658191543895143840000, 20852386088294732932920960000, 28546916554875489385168794240000, 6855338104106528236638391873920000, 12675520154492970709544386574878080000
Offset: 1
Keywords
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.
Links
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
f2:=proc(n) local p; p:=ithprime(n); denom(add(1/i^2,i=1..p-1)); end proc; [seq(f2(n),n=1..20)];
-
Mathematica
a[n_] := HarmonicNumber[Prime[n] - 1, 2] // Denominator; Array[a, 15] (* Jean-François Alcover, Nov 25 2017 *)