This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186726 #26 Mar 02 2020 09:36:45 %S A186726 1,1,1,0,0,0,1,1,1,1,1,1,1,1,2,1,2,1,6,1,33,1,386,1,7575,1,181229,1, %T A186726 4624503,1,122090549,1,3328929974,1,93990693868,26,2754223099408,13505 %N A186726 Number of connected regular graphs with n nodes and girth at least 6. %H A186726 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_6">Connected regular graphs with girth at least 6</a> %H A186726 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %H A186726 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a> %H A186726 M. Meringer, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G">Fast generation of regular graphs and construction of cages</a>, J. Graph Theory 30 (2) (1999) 137-146. %F A186726 a(n) = sum of the n-th row of A186716. %e A186726 a(37) = 0 + 0 + 1 + 0 + 13504 = 13505. %Y A186726 Connected regular graphs of any degree with girth at least g: A005177 (g=3), A186724 (g=4), A186725 (g=5), this sequence (g=6), A186727 (g=7), A186728 (g=8), A186729 (g=9). %Y A186726 Connected k-regular simple graphs with girth at least 6: this sequence (any k), A186716 (triangle); specific k: A185116 (k=2), A014374 (k=3), A058348 (k=4). %K A186726 nonn,more,hard %O A186726 0,15 %A A186726 _Jason Kimberley_, Nov 23 2011 %E A186726 a(36)-a(37) from _Jinyuan Wang_, Mar 02 2020