A186740 Sequence read from antidiagonals of rectangular array with entry in row n and column q given by T(n,q) = 2^(2*n)*(Sum_{j=1..n+1} (cos(j*Pi/(2*q+1)))^(2*n)), n >= 0, q >= 1.
1, 1, 2, 1, 3, 3, 1, 7, 5, 4, 1, 18, 13, 7, 5, 1, 47, 38, 19, 9, 6, 1, 123, 117, 58, 25, 11, 7, 1, 322, 370, 187, 78, 31, 13, 8, 1, 843, 1186, 622, 257, 98, 37, 15, 9, 1, 2207, 3827, 2110, 874, 327, 118, 43, 17, 10, 1, 5778, 12389, 7252, 3034, 1126, 397, 138, 49, 19, 11
Offset: 0
Examples
Array begins: 1 2 3 4 5 6 7 8 9 ... 1 3 5 7 9 11 13 15 17 ... 1 7 13 19 25 31 37 43 49 ... 1 18 38 58 78 98 118 138 158 ... 1 47 117 187 257 327 397 467 537 ... 1 123 370 622 874 1126 1378 1630 1882 ... 1 322 1186 2110 3034 3958 4882 5806 6730 ... 1 843 3827 7252 10684 14116 17548 20980 24412 ... 1 2207 12389 25147 38017 50887 63757 76627 89497 ... ... As a triangle: 1, 1, 2, 1, 3, 3, 1, 7, 5, 4, 1, 18, 13, 7, 5, 1, 47, 38, 19, 9, 6, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1275
- S. Barbero, Dickson Polynomials, Chebyshev Polynomials, and Some Conjectures of Jeffery, Journal of Integer Sequences, 17 (2014), #14.3.8.
Crossrefs
Formula
Conjecture: G.f. for column q is F_q(x) = (Sum_{r=0..q-1} ((q-r)*(-1)^r*binomial(2*q-r,r)*x^r)) / (Sum_{s=0..q} ((-1)^s*binomial(2*q-s,s)*x^s)), q >= 1.
Conjecture: G.f. for n-th row is of the form G_n(x) = H_n(x)/(1-x)^2, where H_n(x) is a polynomial in x.
Comments