This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186754 #30 May 11 2025 23:48:40 %S A186754 1,0,1,0,1,1,1,1,3,1,5,5,7,6,1,23,36,25,25,10,1,129,234,166,110,65,15, %T A186754 1,894,1597,1316,686,385,140,21,1,7202,12459,10893,5754,2611,1106,266, %U A186754 28,1,65085,111451,97287,54559,22428,8841,2730,462,36,1,651263,1116277,963121,554670,229405,80871,26397,6000,750,45,1 %N A186754 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k increasing cycles (0<=k<=n). A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1) < b(2) < b(3) < ... . %H A186754 Alois P. Heinz, <a href="/A186754/b186754.txt">Rows n = 0..140, flattened</a> %F A186754 E.g.f.: G(t,z) = exp((t-1)*(exp(z)-1))/(1-z). %F A186754 The 4-variate e.g.f. H(u,v,w,z) of the permutations of {1,2,...,n} with respect to size (marked by z), number of fixed points (marked by u), number of increasing cycles of length >=2 (marked by v), and number of nonincreasing cycles (marked by w) is given by H(u,v,w,z) = exp(u*z+v*(exp(z)-1-z)+w*(1-exp(z)))/(1-z)^w. Remark: the nonincreasing cycles are necessarily of length >=3. We have: G(t,z) = H(t,t,1,z). %F A186754 Sum_{k=0..n} T(n,k) = n!. %F A186754 T(n,0) = A186755(n). %F A186754 Sum_{k=0..n} k*T(n,k) = A002627(n). %e A186754 T(3,0) = 1 because we have (132). %e A186754 T(4,2) = 7 because we have (1)(234), (13)(24), (12)(34), (123)(4), (124)(3), (134)(2), and (14)(23). %e A186754 Triangle starts: %e A186754 1; %e A186754 0, 1; %e A186754 0, 1, 1; %e A186754 1, 1, 3, 1; %e A186754 5, 5, 7, 6, 1; %e A186754 23, 36, 25, 25, 10, 1; %p A186754 G := exp((t-1)*(exp(z)-1))/(1-z); Gser := simplify(series(G, z = 0, 16)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form %p A186754 # second Maple program: %p A186754 b:= proc(n) option remember; expand(`if`(n=0, 1, add( %p A186754 b(n-i)*binomial(n-1, i-1)*(x+(i-1)!-1), i=1..n))) %p A186754 end: %p A186754 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)): %p A186754 seq(T(n), n=0..10); # _Alois P. Heinz_, Sep 25 2016 %t A186754 b[n_] := b[n] = Expand[If[n==0, 1, Sum[b[n-i]*Binomial[n-1, i-1]*(x + (i-1)! - 1), {i, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n]]; Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Oct 04 2016, after _Alois P. Heinz_ *) %Y A186754 Columns k=0-1 give: A186755, A349788. %Y A186754 Cf. A000142, A002627, A186755, A186756, A186757, A186758, A186759, A186760. %K A186754 nonn,tabl %O A186754 0,9 %A A186754 _Emeric Deutsch_, Feb 26 2011