This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186863 #58 Dec 18 2023 11:26:30 %S A186863 0,24,496,1764,3768,6508,9984,14196,19144,24828,31248,38404,46296, %T A186863 54924,64288,74388,85224,96796,109104,122148,135928,150444,165696, %U A186863 181684,198408,215868,234064,252996,272664,293068,314208,336084,358696,382044,406128,430948,456504,482796,509824 %N A186863 Number of 4-step king's tours on an n X n board summed over all starting positions. %C A186863 From _J. Volkmar Schmidt_, Oct 25 2023 (Start) %C A186863 Proof of formula for a(n) follows proof scheme from _David A. Corneth_ for A186864. %C A186863 Distribution matrix of surrounding rectangles for 4-step walks is: %C A186863 [0 0 0 2] %C A186863 [0 24 80 28] %C A186863 [0 80 80 20] %C A186863 [2 28 20 4] (End) %H A186863 J. Volkmar Schmidt, <a href="/A186863/b186863.txt">Table of n, a(n) for n = 1..50</a> %H A186863 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1). %F A186863 a(n) = 368*n^2 - 1308*n + 1108 = 4*(92*(n-1)*(n-3) + 41*n + 1) for n > 2. %F A186863 G.f.: 4*x^2*(6 + 106*x + 87*x^2 - 15*x^3)/(1-x)^3. - _Colin Barker_, Jan 22 2012 %e A186863 Some solutions for 3 X 3: %e A186863 0 3 0 0 2 0 0 0 1 1 0 0 0 0 0 0 4 3 4 0 0 %e A186863 0 2 4 0 3 1 0 0 2 4 2 0 0 1 4 0 2 1 1 3 0 %e A186863 0 1 0 0 0 4 4 3 0 3 0 0 0 3 2 0 0 0 2 0 0 %Y A186863 Row 4 of A186861. %K A186863 nonn,easy %O A186863 1,2 %A A186863 _R. H. Hardin_, Feb 27 2011 %E A186863 a(34)-a(39) from _J. Volkmar Schmidt_, Sep 03 2023