cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186885 Numbers whose squares are the average of two distinct positive cubes.

This page as a plain text file.
%I A186885 #36 Jan 19 2019 03:37:56
%S A186885 6,42,48,78,147,162,196,336,384,456,624,722,750,1050,1134,1176,1296,
%T A186885 1342,1568,1573,1674,1694,2028,2058,2106,2366,2387,2450,2522,2646,
%U A186885 2688,2899,3072,3087,3211,3648,3698,3969,4374,4992,5250,5292,5550,5776,5915,6000
%N A186885 Numbers whose squares are the average of two distinct positive cubes.
%C A186885 If m is in this sequence, then so is m*k^3 for all k >= 1: e.g., both m = 6 and 6000 = m*10^3 are in this sequence. Also, there are no primes in this sequence.
%C A186885 The table gives all 396 triples (n, a, b) such that n^2 = (a^3 + b^3)/2 and n < 5*10^5.
%C A186885 Parities of a and b are equal: a == b (mod 2). - _David A. Corneth_, Oct 13 2018
%C A186885 Square roots of the intersection of A000290 and A268319. - _Antti Karttunen_, Jan 15 2019
%H A186885 David A. Corneth, <a href="/A186885/b186885.txt">Table of n, a(n) for n = 1..3948</a>
%H A186885 Zak Seidov, <a href="/A186885/a186885.txt">Triples {n,a,b} for n's up to 5*10^5</a>
%F A186885 n^2 is average of two cubes:  n^2 = (a^3 + b^3)/2, 0 < a < b.
%e A186885 6^2 = (2^3 + 4^3)/2;
%e A186885 42^2 = (11^3 + 13^3)/2;
%e A186885 147^2 = (7^3 + 35^3)/2.
%t A186885 nn = 13552; lim = Floor[(2 nn^2)^(1/3)]; Sort[Reap[Do[num = (a^3 + b^3)/2; If[IntegerQ[num] && num <= nn^2 && IntegerQ[Sqrt[num]], Sow[Sqrt[num]]], {a, lim}, {b, a - 1}]][[2, 1]]]
%t A186885 (* Second program: *)
%t A186885 Sqrt[#]&/@Select[Mean/@Subsets[Range[500]^3,{2}],IntegerQ[Sqrt[ #]]&]// Union (* _Harvey P. Dale_, Oct 13 2018 *)
%t A186885 upto[m_] := Module[{res = {}, n = m*m, i, j, k}, For[i = 1, i <= Floor[ Quotient[n, 2]^(1/3)], i++, For[j = i+2, j <= Floor[(n-i^3)^(1/3)], j += 2, If[IntegerQ[k = Sqrt[(i^3 + j^3)/2]], AppendTo[res, k]]]]; Sort[res]]; upto[20000] (* _Jean-François Alcover_, Jan 17 2019, after _David A. Corneth_ *)
%o A186885 (PARI) upto(n) = {my(res = List(), k); n*=n; for(i = 1, sqrtnint(n \ 2, 3), forstep(j = i + 2, sqrtnint(n - i^3, 3), 2, if(issquare((i^3 + j^3) / 2, &k),
%o A186885 listput(res, k)))); listsort(res); res} \\ _David A. Corneth_, Nov 25 2018
%Y A186885 Cf. A000290, A000578, A268319.
%Y A186885 Cf. also A273822.
%K A186885 nonn
%O A186885 1,1
%A A186885 _Zak Seidov_, Feb 28 2011
%E A186885 Edited by _M. F. Hasler_, Dec 10 2018