This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186995 #50 Feb 16 2025 08:33:14 %S A186995 127,2,373,83,28151,223,6211,2789,294001,3347,20837899,4751,6588721, %T A186995 484439,862789,10513,2078920243,10909,169402249,2823167,267895961, %U A186995 68543,1016960933671,181141,121660507,6139219,11646280537,488651 %N A186995 Smallest weak prime in base n. %C A186995 In base b, a prime is said to be weakly prime if changing any digit produces only composite numbers. Tao proves that in any fixed base there are an infinite number of weakly primes. %C A186995 In particular, changing the leading digit to 0 must produce a composite number. These are also called weak primes, weakly primes, and isolated primes. - _N. J. A. Sloane_, May 06 2019 %C A186995 a(24) > 10^11. - _Jon E. Schoenfield_, May 06 2019 %C A186995 a(30) > 2*10^12. - _Giovanni Resta_, Jun 17 2019 %C A186995 a(30) > 10^13. - _Dana Jacobsen_, Mar 25 2023 %C A186995 a(n) appears to be relatively smaller for n odd than for n even. For instance, a(31) = 356479, a(33) = 399946711, a(35) = 22549349, a(37) = 8371249. a(n) for n of the form 6k+3 appear to be relatively larger than a(n) for other odd n. a(n) for n of the form 6k appear to be relatively larger than a(n) for other even n. - _Chai Wah Wu_, Mar 24 2024 %H A186995 Terence Tao, <a href="https://arxiv.org/abs/0802.3361">A remark on primality testing and decimal expansions</a>, arXiv:0802.3361 [math.NT], 2008. %H A186995 Terence Tao, <a href="https://doi.org/10.1017/S1446788712000043">A remark on primality testing and decimal expansions</a>, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413. %H A186995 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WeaklyPrime.html">Weakly Prime</a> %t A186995 isWeak[n_, base_] := Module[{d, e, weak, num}, d = IntegerDigits[n, base]; weak = True; Do[e = d; e[[i]] = j; num = FromDigits[e, base]; If[num != n && PrimeQ[num], weak = False; Break[]], {i, Length[d]}, {j, 0, base - 1}]; weak]; Table[p = 2; While[! isWeak[p, n], p = NextPrime[p]]; p, {n, 2, 16}] %o A186995 (Python) %o A186995 from itertools import count %o A186995 from sympy import isprime %o A186995 from sympy.ntheory.digits import digits %o A186995 def fromdigits(d, b): %o A186995 n = 0 %o A186995 for di in d: n *= b; n += di %o A186995 return n %o A186995 def h1(n, b): # hamming distance 1 neighbors of n in base b %o A186995 d = digits(n, b)[1:]; L = len(d) %o A186995 yield from (fromdigits(d[:i]+[c]+d[i+1:], b) for c in range(b) for i in range(L) if c!=d[i]) %o A186995 def ok(n, b): return isprime(n) and all(not isprime(k) for k in h1(n, b)) %o A186995 def a(n): return next(k for k in count(2) if ok(k, n)) %o A186995 print([a(n) for n in range(2, 12)]) # _Michael S. Branicky_, Jul 31 2022 %o A186995 (Python) %o A186995 from sympy import isprime, nextprime %o A186995 from sympy.ntheory import digits %o A186995 def A186995(n): %o A186995 p = 2 %o A186995 while True: %o A186995 s = digits(p,n)[1:] %o A186995 l = len(s) %o A186995 for i,j in enumerate(s[::-1]): %o A186995 m = n**i %o A186995 for k in range(n): %o A186995 if k!=j and isprime(p+(k-j)*m): %o A186995 break %o A186995 else: %o A186995 continue %o A186995 break %o A186995 else: %o A186995 return p %o A186995 p = nextprime(p) # _Chai Wah Wu_, Mar 24 2024 %Y A186995 Cf. A050249 (base 10), A137985 (base 2). %K A186995 nonn,base,more %O A186995 2,1 %A A186995 _T. D. Noe_, Mar 01 2011 %E A186995 a(17)-a(23) from _Terentyev Oleg_, Sep 04 2011 %E A186995 a(24)-a(29) from _Giovanni Resta_, Jun 17 2019