cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187024 a(n) is the least number k such that k*n+1 is a prime dividing n^n+1.

This page as a plain text file.
%I A187024 #15 May 17 2024 03:21:29
%S A187024 2,2,64,104,2,16,12,8,10,2,16,1032,2,2,17136,2703399548648159360,2,
%T A187024 5700,7436,16,437174342164,2,1392,9568,2,6,16,8,2,12,20,20,176764,2,
%U A187024 623673825204293256537467494040862720,16,5340,2,16,440,16,22,8,990520
%N A187024 a(n) is the least number k such that k*n+1 is a prime dividing n^n+1.
%C A187024 The smallest prime factor of n^n+1 of the form k*n+1 is A187022(n).
%H A187024 Amiram Eldar, <a href="/A187024/b187024.txt">Table of n, a(n) for n = 2..148</a>
%e A187024 12^12+1 = 89*193*233*2227777; the smallest prime divisor of the form k*n+1 is 193 = 16*12+1, hence a(12)=16.
%t A187024 Table[p=First/@FactorInteger[n^n+1]; (Select[p, Mod[#1, n] == 1 &, 1][[1]]
%t A187024   - 1)/n, {n, 2, 40}]
%o A187024 (Magma) A187024:=function(n); for d in PrimeDivisors(n^n+1) do if d mod n eq 1 then return (d-1)/n; end if; end for; return 0; end function; [ A187024(n): n in [2..40] ]; // _Klaus Brockhaus_, Mar 02 2011
%Y A187024 Cf. A187022.
%K A187024 nonn
%O A187024 2,1
%A A187024 _Michel Lagneau_, Mar 02 2011