cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187029 Number of 4-step one or two collinear space at a time queen's tours on an n X n board summed over all starting positions.

This page as a plain text file.
%I A187029 #10 Apr 20 2018 06:08:47
%S A187029 0,24,1344,7056,19568,39348,66360,100380,141408,189444,244488,306540,
%T A187029 375600,451668,534744,624828,721920,826020,937128,1055244,1180368,
%U A187029 1312500,1451640,1597788,1750944,1911108,2078280,2252460,2433648,2621844
%N A187029 Number of 4-step one or two collinear space at a time queen's tours on an n X n board summed over all starting positions.
%C A187029 Row 4 of A187027.
%H A187029 R. H. Hardin, <a href="/A187029/b187029.txt">Table of n, a(n) for n = 1..31</a>
%F A187029 Empirical: a(n) = 3504*n^2 - 18540*n + 24444 for n>5.
%F A187029 Conjectures from _Colin Barker_, Apr 20 2018: (Start)
%F A187029 G.f.: 4*x^2*(6 + 318*x + 774*x^2 + 602*x^3 + 117*x^4 - 9*x^5 - 56*x^6) / (1 - x)^3.
%F A187029 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
%F A187029 (End)
%e A187029 Some solutions for 4 X 4:
%e A187029 ..0..0..0..0....2..0..3..4....0..0..0..4....0..0..0..0....0..2..0..0
%e A187029 ..0..0..0..1....0..1..0..0....1..2..3..0....2..3..0..0....4..1..3..0
%e A187029 ..0..0..3..4....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
%e A187029 ..0..0..0..2....0..0..0..0....0..0..0..0....0..4..0..0....0..0..0..0
%Y A187029 Cf. A187027.
%K A187029 nonn
%O A187029 1,2
%A A187029 _R. H. Hardin_, Mar 02 2011