A187049 Number of 5-step one or two space at a time bishop's tours on an n X n board summed over all starting positions.
0, 0, 8, 456, 2896, 9216, 20648, 37472, 59524, 86656, 118868, 156160, 198532, 245984, 298516, 356128, 418820, 486592, 559444, 637376, 720388, 808480, 901652, 999904, 1103236, 1211648, 1325140, 1443712, 1567364, 1696096, 1829908, 1968800, 2112772
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..0..0..0....0..0..3..0....4..0..0..0....0..5..0..1 ..0..0..1..0....0..4..0..0....0..2..0..4....0..5..0..1....0..0..0..0 ..0..4..0..2....3..0..1..0....0..0..0..0....0..0..3..0....0..2..0..4 ..5..0..3..0....0..2..0..5....0..5..0..1....0..2..0..0....0..0..3..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..35
Crossrefs
Cf. A187046.
Formula
Empirical: a(n) = 2540*n^2 - 21128*n + 43936 for n>7.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 4*x^3*(2 + 108*x + 388*x^2 + 472*x^3 + 308*x^4 + 70*x^5 - 41*x^6 - 37*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>10.
(End)
Comments