A187050 Number of 6-step one or two space at a time bishop's tours on an n X n board summed over all starting positions.
0, 0, 0, 584, 6952, 29500, 79088, 162320, 281320, 435436, 623508, 845084, 1100164, 1388748, 1710836, 2066428, 2455524, 2878124, 3334228, 3823836, 4346948, 4903564, 5493684, 6117308, 6774436, 7465068, 8189204, 8946844, 9737988, 10562636
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..4..0..0....3..0..5..0....3..0..1..0....0..0..4..0 ..0..5..0..3....5..0..3..0....0..4..0..1....0..2..0..5....0..5..0..1 ..1..0..4..0....0..6..0..2....6..0..2..0....0..0..4..0....3..0..6..0 ..0..2..0..6....0..0..1..0....0..0..0..0....0..6..0..0....0..2..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..35
Crossrefs
Cf. A187046.
Formula
Empirical: a(n) = 16752*n^2 - 163720*n + 397436 for n>9.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 4*x^3*(146 + 1300*x + 2599*x^2 + 2715*x^3 + 1651*x^4 + 531*x^5 - 163*x^6 - 290*x^7 - 113*x^8) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)
Comments