A187051 Number of 7-step one or two space at a time bishop's tours on an n X n board summed over all starting positions.
0, 0, 0, 400, 14024, 86608, 285048, 668176, 1272720, 2110944, 3180724, 4475176, 5989600, 7722744, 9674608, 11845192, 14234496, 16842520, 19669264, 22714728, 25978912, 29461816, 33163440, 37083784, 41222848, 45580632, 50157136, 54952360
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..1..0..3....0..2..0..0....0..2..0..7....0..3..0..7....0..7..0..0 ..5..0..2..0....3..0..6..0....3..0..6..0....2..0..5..0....3..0..6..0 ..0..4..0..7....0..5..0..1....0..5..0..1....0..6..0..4....0..4..0..1 ..0..0..6..0....7..0..4..0....0..0..4..0....0..0..1..0....5..0..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..35
Crossrefs
Cf. A187046.
Formula
Empirical: a(n) = 109360*n^2 - 1219576*n + 3362248 for n>11.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 4*x^4*(100 + 3206*x + 11434*x^2 + 16724*x^3 + 14708*x^4 + 9182*x^5 + 3066*x^6 - 531*x^7 - 1721*x^8 - 1175*x^9 - 313*x^10) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>14.
(End)
Comments