This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187058 #27 Apr 12 2025 16:05:08 %S A187058 11,17,41,1277,1607,3527,13901,21557,26681,28277,31247,33617,55661, %T A187058 68897,97367,113147,128981,166841,195731,221717,347981,348431,354371, %U A187058 416387,421697,506327,548831,566537,665111,844427,929057,954257 %N A187058 Primes p such that the polynomial x^2 + x + p generates only primes for x = 1..5. %C A187058 From Weber, p. 15. %C A187058 This sequence is infinite, assuming Dickson's conjecture. %C A187058 All terms = {11, 17} mod 30. - _Zak Seidov_, May 07 2011 %H A187058 Charles R Greathouse IV, <a href="/A187058/b187058.txt">Table of n, a(n) for n = 1..10000</a>, replacing a b-file from Zak Seidov. %H A187058 H. J. Weber, <a href="http://arxiv.org/abs/1103.0447">Regularities of Twin, Triplet and Multiplet Prime Numbers</a>, arXiv:1103.0447 [math.NT], 2011-2012. %e A187058 a(2) = 17 because x^2 + x + 17 generates 0^2 + 0 + 17 = 17; 1^2 + 1 + 17 = 19; 2^2 + 2 + 17 = 23; 3^2 + 3 + 17 = 29; 4^2 + 4 + 17 = 37; and 5^2 + 5 + 17 = 47, all primes. %t A187058 okQ[n_] := And @@ PrimeQ[Table[i^2 + i + n, {i, 0, 5}]]; Select[Range[10000], okQ] (* _T. D. Noe_, Mar 03 2011 *) %t A187058 Select[Prime[Range[76000]],AllTrue[#+{2,6,12,20,30},PrimeQ]&] (* _Harvey P. Dale_, Apr 12 2025 *) %o A187058 (PARI) forprime(p=9,1e6,if((p%30==11 || p%30==17) && isprime(p+2) && isprime(p+6) && isprime(p+12) && isprime(p+20) && isprime(p+30), print1(p", "))) \\ _Charles R Greathouse IV_, May 08 2011 %Y A187058 Cf. A144051, A187057, A187060. %K A187058 nonn %O A187058 1,1 %A A187058 _Jonathan Vos Post_, Mar 03 2011