cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187061 Digits of the decimal expansion the constant whose continued fraction expansion is given by (a suffix of) A026465 (just start from the second term): [0;2,1,1,2,2,2,1,1,2,1,1,...]=0.3867499707....

This page as a plain text file.
%I A187061 #28 Apr 04 2024 17:25:31
%S A187061 3,8,6,7,4,9,9,7,0,7,1,4,3,0,0,7,0,6,1,7,1,5,2,4,8,0,3,4,8,5,5,8,0,9,
%T A187061 3,9,6,6,1,4,4,7,6,1,5,5,6,3,0,7,7,5,0,5,1,4,7,5,0,2,8,0,5,6,8,1,2,2,
%U A187061 4,0,7,0,7,5,8,0,5,2,9,0,9,1
%N A187061 Digits of the decimal expansion the constant whose continued fraction expansion is given by (a suffix of) A026465 (just start from the second term): [0;2,1,1,2,2,2,1,1,2,1,1,...]=0.3867499707....
%C A187061 Since the continued fraction of 0.3867499707... is a sequence which is the fixed point of a substitution, this constant is transcendental.
%H A187061 Claudio Bonanno, Carlo Carminati, Stefano Isola, and Giulio Tiozzo, <a href="https://arxiv.org/abs/1012.2131">Dynamics of continued fractions and kneading sequences of unimodal maps</a>, arXiv:1012.2131 [math.DS], 2010-2012.
%H A187061 Julien Cassaigne, <a href="https://doi.org/10.1016/S0304-3975(98)00247-3">Limit values of the recurrence quotient of Sturmian sequences</a>, Theoret. Comput. Sci., Vol. 218, No. 1 (1999), pp. 3-12.
%H A187061 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%p A187061 ## period-doubling routine (see A026465):
%p A187061 double:=proc(SS)
%p A187061 NEW:=[op(S), op(S)]:
%p A187061 if op(nops(NEW), NEW)=1
%p A187061 then NEW:=[seq(op(j, NEW), j=1..nops(NEW)-2), op(nops(NEW)-1, NEW)+1]:
%p A187061 else NEW:=[seq(op(j, NEW), j=1..nops(NEW)-1), op(nops(NEW)-1, NEW)-1, 1]:
%p A187061 fi:
%p A187061 end proc:
%p A187061 # 10 loops of the above routine generate the first 1365 terms of the sequence
%p A187061 S:=[2]:
%p A187061 for j from 1 to 10  do S:=double(S); od:
%p A187061 ## transform the list S into a continued fraction:
%p A187061 Digits:=500;
%p A187061 with(numtheory);
%p A187061 q:=evalf(invcfrac([[0],S]));
%p A187061 ## list of digits:
%p A187061 L:=[seq(floor(q*10**j) - 10*floor(q*10**(j-1)), j=1..200)];
%t A187061 First[RealDigits[FromContinuedFraction[ThueMorse[Range[550]]] - 1, 10, 100]] (* _Paolo Xausa_, Apr 04 2024 *)
%Y A187061 Cf. A026465.
%K A187061 nonn,cons,easy
%O A187061 0,1
%A A187061 _Carlo Carminati_, Mar 03 2011