cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187067 Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n = 2*r + p_i and define a(-2)=0. Then, a(n) = a(2*r + p_i) gives the quantity of H_(7,3,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x = sqrt(2*cos(Pi/7)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 3, 4, 6, 9, 10, 14, 19, 28, 33, 47, 61, 89, 108, 155, 197, 286, 352, 507, 638, 924, 1145, 1652, 2069, 2993, 3721, 5373, 6714, 9707, 12087, 17460, 21794, 31501, 39254, 56714, 70755, 102256
Offset: 0

Views

Author

L. Edson Jeffery, Mar 09 2011

Keywords

Comments

Theory. (Start)
1. Definitions. Let T_(7,j,0) denote the rhombus with sides of unit length (=1), interior angles given by the pair (j*Pi/7,(7-j)*Pi/7) and Area(T_(7,j,0)) = sin(j*Pi/7), j in {1,2,3}. Associated with T_(7,j,0) are its angle coefficients (j, 7-j) in which one coefficient is even while the other is odd. A half-tile is created by cutting T_(7,j,0) along a line extending between its two corners with even angle coefficient; let H_(7,j,0) denote this half-tile. Similarly, a T_(7,j,r) tile is a linearly scaled version of T_(7,j,0) with sides of length x^r and Area(T_(7,j,r)) = x^(2*r)*sin(j*Pi/7), r>=0 an integer, where x is the positive, constant square root x = sqrt(2*cos(j*Pi/7)); likewise let H_(7,j,r) denote the corresponding half-tile. Often H_(7,i,r) (i in {1,2,3}) can be subdivided into an integral number of each equivalence class H_(7,j,0). But regardless of whether or not H_(7,j,r) subdivides, in theory such a proposed subdivision for each j can be represented by the matrix M=(m_(i,j)), i,j=1,2,3, in which the entry m_(i,j) gives the quantity of H_(7,j,0) tiles that should be present in a subdivided H_(7,i,r) tile. The number x^(2*r) (the square of the scaling factor) is an eigenvalue of M=(U_1)^r, where
U_1= (0 1 0)
(1 0 1)
(0 1 1).
2. The sequence. Let r>=0, and let C_r be the r-th "block" defined by C_r = {a(2*r-2), a(2*r), a(2*r+1)}. Note that C_r - C_(r-1) - 2*C_(r-2) + C_(r-3) = {0,0,0}, with C_0 = {a(-2),a(0),a(1)} = {0,0,1}. Let n = 2*r + p_i. Then a(n) = a(2*r + p_i) = m_(i,3), where M = (m_(i,j)) = (U_1)^r was defined above. Hence the block C_r corresponds component-wise to the third column of M, and a(n) = m_(i,3) gives the quantity of H_(7,3,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Combining blocks A_r, B_r and C_r, from A187065, A187066 and this sequence, respectively, as matrix columns [A_r, B_r, C_r] generates the matrix (U_1)^r, and a negative index (-1)*r yields the corresponding inverse [A_(-r), B_(-r), C_(-r)] = (U_1)^(-r) of (U_1)^r. Therefore, the three sequences need not be causal.
Since a(2*r-2) = a(2*(r-1)) for all r, this sequence arises by concatenation of third-column entries m_(2,3) and m_(3,3) from successive matrices M = (U_1)^r.
a(2*n) = A006053(n+1), a(2*n+1) = A028495(n).

Examples

			Suppose r=3. Then
C_r = C_3 = {a(2*r-2), a(2*r), a(2*r+1)} = {a(4), a(6), a(7)} = {1,3,3},
corresponding to the entries in the third column of
M = (U_2)^3 = (0 2 1)
              (2 1 3)
              (1 3 3).
Choose i=2 and set n = 2*r + p_i. Then a(n) = a(2*r + p_i) = a(6+0) = a(6) = 3, which equals the entry in row 2 and column 3 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,3) = 3 H_(7,3,0) tiles.
		

Crossrefs

Formula

Recurrence: a(n) = a(n-2) + 2*a(n-4) - a(n-6).
G.f.: x(1 + x - x^4)/(1 - x^2 - 2*x^4 + x^6).
Closed-form: a(n) = -(1/14)*((X_1 + Y_1*(-1)^(n-1))*((w_2)^2 - (w_3)^2)*(w_1)^(n-1) + (X_2 + Y_2*(-1)^(n-1))*((w_3)^2 - (w_1)^2)*(w_2)^(n-1) + (X_3 + Y_3*(-1)^(n-1))*((w_1)^2 - (w_2)^2)*(w_3)^(n-1)), where w_k = sqrt(2*(-1)^(k-1)*cos(k*Pi/7)), X_k = (w_k)^4 + (w_k)^3 - 1 and Y_k = (w_k)^4 - (w_k)^3 - 1, k=1,2,3.
For n>1, a(2n) = a(2n-1) + a(2n-4), a(2n+1) = a(2n-1) + a(2n-2). - Franklin T. Adams-Watters, Jan 06 2014