A187067 Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n = 2*r + p_i and define a(-2)=0. Then, a(n) = a(2*r + p_i) gives the quantity of H_(7,3,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x = sqrt(2*cos(Pi/7)).
0, 1, 1, 1, 1, 2, 3, 3, 4, 6, 9, 10, 14, 19, 28, 33, 47, 61, 89, 108, 155, 197, 286, 352, 507, 638, 924, 1145, 1652, 2069, 2993, 3721, 5373, 6714, 9707, 12087, 17460, 21794, 31501, 39254, 56714, 70755, 102256
Offset: 0
Examples
Suppose r=3. Then C_r = C_3 = {a(2*r-2), a(2*r), a(2*r+1)} = {a(4), a(6), a(7)} = {1,3,3}, corresponding to the entries in the third column of M = (U_2)^3 = (0 2 1) (2 1 3) (1 3 3). Choose i=2 and set n = 2*r + p_i. Then a(n) = a(2*r + p_i) = a(6+0) = a(6) = 3, which equals the entry in row 2 and column 3 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,3) = 3 H_(7,3,0) tiles.
Links
- Matthew House, Table of n, a(n) for n = 0..7784
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,0,-1).
Formula
Recurrence: a(n) = a(n-2) + 2*a(n-4) - a(n-6).
G.f.: x(1 + x - x^4)/(1 - x^2 - 2*x^4 + x^6).
Closed-form: a(n) = -(1/14)*((X_1 + Y_1*(-1)^(n-1))*((w_2)^2 - (w_3)^2)*(w_1)^(n-1) + (X_2 + Y_2*(-1)^(n-1))*((w_3)^2 - (w_1)^2)*(w_2)^(n-1) + (X_3 + Y_3*(-1)^(n-1))*((w_1)^2 - (w_2)^2)*(w_3)^(n-1)), where w_k = sqrt(2*(-1)^(k-1)*cos(k*Pi/7)), X_k = (w_k)^4 + (w_k)^3 - 1 and Y_k = (w_k)^4 - (w_k)^3 - 1, k=1,2,3.
For n>1, a(2n) = a(2n-1) + a(2n-4), a(2n+1) = a(2n-1) + a(2n-2). - Franklin T. Adams-Watters, Jan 06 2014
Comments