cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187072 Prime numbers chosen such that the even numbers that are the sum of two consecutive terms occur only once and occur as early as possible.

This page as a plain text file.
%I A187072 #35 Mar 13 2023 10:21:33
%S A187072 3,3,5,5,7,7,11,5,17,3,23,5,19,11,23,13,19,19,23,17,29,19,31,13,41,11,
%T A187072 47,13,43,19,47,17,53,19,59,17,67,7,61,19,67,23,59,29,67,31,61,41,53,
%U A187072 47,59,53,61,43,67,41,79,37,89,29,101,23,109,13,127,7,131,5,137,7,139,11,137,17,139,13,149,11,157,7,151,19,109,67,107,59,113,67
%N A187072 Prime numbers chosen such that the even numbers that are the sum of two consecutive terms occur only once and occur as early as possible.
%C A187072 The even numbers a(n) + a(n+1) are in sequence A187085.
%C A187072 The terms for even n grow rapidly; for odd n they grow slowly. It appears that primes occur at a consistent frequency: in the first 1000000 terms, primes 3 to 23 occur about 4.7%, 4.9%, 3.4%, 2.9%, 2.6%, 2.0%, 1.8%, and 1.4% of the time. - _T. D. Noe_, Mar 04 2011
%H A187072 T. D. Noe, <a href="/A187072/b187072.txt">Table of n, a(n) for n = 1..5000</a>
%H A187072 T. D. Noe, <a href="/A187072/a187072.gif">Plot of frequency (%) of primes in the first 10^9 terms</a>
%H A187072 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%e A187072 Primes: 3 3 5  5  7  7  11  5  17  3  23  5  19  11  23  13  19  19  23
%e A187072 Evens:   6 8 10 12 14 18  16 22  20 26  28 24  30  34  36  32  38  42
%t A187072 lastE=10; eList=Range[6,lastE,2]; evens[k_] := If[k<=Length[eList], eList[[k]], lastE+=2; AppendTo[eList,lastE]; lastE]; Join[{lastP=3}, Table[k=1; While[p=evens[k]-lastP; p<0 || !PrimeQ[p], k++]; eList=Delete[eList,k]; lastP=p, {999}]] (* _T. D. Noe_, Mar 04 2011 *)
%t A187072 s={3,3}; ev={6}; a=3; Do[k=2; While[!FreeQ[ev,(b=a+(p=Prime[k]))],k++]; a=p; AppendTo[ev,b]; AppendTo[s,a], {3000}]; s (* Zak Seidov, Mar 03 2011 *)
%o A187072 (Haskell)
%o A187072 import Data.Set (Set, empty, member, insert)
%o A187072 a187072 n = a187072_list !! (n-1)
%o A187072 a187072_list = goldbach 0 a065091_list empty where
%o A187072   goldbach :: Integer -> [Integer] -> Set Integer -> [Integer]
%o A187072   goldbach q (p:ps) gbEven
%o A187072       | qp `member` gbEven = goldbach q ps gbEven
%o A187072       | otherwise          = p : goldbach p a065091_list (insert qp gbEven)
%o A187072       where qp = q + p
%o A187072 -- performance bug fixed: _Reinhard Zumkeller_, Mar 06 2011
%Y A187072 Cf. A065091, A118371, A187085, A187098.
%K A187072 nonn,look
%O A187072 1,1
%A A187072 _Reinhard Zumkeller_, Mar 03 2011