This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187092 #15 Mar 27 2017 18:32:23 %S A187092 1,2,3,4,6,7,9,10,13,15,21,22,28,30,33,35,43,44,52,54,58,60,68,69,77, %T A187092 81,89,95,119,120,144,150,160,166,181,183,213,219,229,232,262,264,294, %U A187092 300,305,311,341,343,373,379,399,411,471,475,505,511,531 %N A187092 Number of nonempty subsets S of {1, 2, ..., n} with pairwise coprime elements that are maximal with respect to inclusion of elements < max(S). %H A187092 Alois P. Heinz, <a href="/A187092/b187092.txt">Table of n, a(n) for n = 1..10000</a> %e A187092 a(8) = 10; all nonempty subsets S of {1, 2, ..., 8} with pairwise coprime elements that are maximal with respect to inclusion of elements < max(S) are: {1}, {1,2}, {1,2,3}, {1,3,4}, {1,5,6}, {1,2,3,5}, {1,3,4,5}, {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,7,8}. %p A187092 with(numtheory): %p A187092 b:= n-> mul(ilog[j](n), j={ithprime(i)$i=1..pi(n)} minus factorset(n)): %p A187092 a:= proc(n) option remember; b(n) +`if`(n<2, 0, a(n-1)) end: %p A187092 seq(a(n), n=1..80); %t A187092 b[n_] := Product[Log[p, n] // Floor, {p, Select[Range[n-1], PrimeQ[#] && GCD[n, #] == 1&]}]; %t A187092 A187092 = Array[b, 100] // Accumulate (* _Jean-François Alcover_, Mar 27 2017, adapted from Maple *) %Y A187092 Partial sums of A186994. %K A187092 nonn %O A187092 1,2 %A A187092 _Alois P. Heinz_, Mar 04 2011