This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187102 #14 Apr 10 2023 10:51:17 %S A187102 1,2,3,4,6,7,9,11 %N A187102 Minimum number of function evaluations in each step of an explicit Runge-Kutta method of order n. %C A187102 a(n)>=n+3 for n>=8 (Butcher 1985). %H A187102 J. C. Butcher, <a href="https://doi.org/10.1090/S0025-5718-1965-0179943-X">On the attainable Order of Runge-Kutta methods</a>, Math. Comp. 19 (1965) 408-417. %H A187102 J. C. Butcher, <a href="https://doi.org/10.1007/BF01935372">The non-existence of ten stage eighth order explicit Runge-Kutta methods</a>, BIT 25 (1985) 521-540. %H A187102 A. R. Curtis, <a href="https://doi.org/10.1007/BF02219778">An eighth order Runge-Kutta process with eleven function evaluations per step</a>, Numer. Math. 16 (1970) 268-277. %H A187102 MathOverflow, <a href="https://mathoverflow.net/questions/339041/what-is-the-minimum-number-of-stages-s-required-for-a-runge-kutta-type-numeric">What is the minimum number of stages s required for a Runge-Kutta type numerical method of given order p?</a>, 2019. %H A187102 Wikipedia, <a href="https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods">Runge-Kutta methods</a>. %F A187102 a(n) = min{k; A187103(k)=n}. %Y A187102 Cf. A187103, A087803. %K A187102 hard,more,nonn %O A187102 1,2 %A A187102 _Pontus von Brömssen_, Mar 04 2011