A187105 Triangle T(n,k) read by rows: number of height-2-restricted finite functions.
1, 1, 1, 3, 2, 1, 10, 8, 3, 1, 41, 38, 15, 4, 1, 196, 216, 90, 24, 5, 1, 1057, 1402, 633, 172, 35, 6, 1, 6322, 10156, 5028, 1424, 290, 48, 7, 1, 41393, 80838, 44217, 13204, 2745, 450, 63, 8, 1, 293608, 698704, 424434, 134680, 28900, 4776, 658, 80, 9, 1
Offset: 1
Examples
Triangle of initial terms: 1 1 1 3 2 1 10 8 3 1 41 38 15 4 1 196 216 90 24 5 1 1057 1402 633 172 35 6 1 T(4,3) = 15 since there are 15 functions f:[2]->[5] such that either f(x) or f(f(x)) is in {3,4,5}. Using <f(1),f(2)> to denote these functions we have the following 15 functions: <2,3>, <2,4>, <2,5>, <3,1>, <3,3>, <3,4>, <3,5>, <4,1>, <4,3>, <4,4>, <4,5>, <5,1>, <5,3>, <5,4>, <5,5>.
Links
- Dennis Walsh, Notes on height-restricted finite functions
Programs
-
Maple
seq(seq(sum(binomial(n+1-k,j)*k^j*j^(n+1-k-j),j=0..(n+1-k)),k=1..n),n=1..15); # triangle's right edge of ones is omitted with this program
-
Mathematica
t[n_, k_] := If[ k == n + 1, 1, Sum[ Binomial[n + 1 - k, j]*k^j*j^(n + 1 - k - j), {j, 0, n + 1 - k}]]; Table[ t[n, k], {n, 0, 9}, {k, n + 1}] // Flatten
Formula
T(n,k) = Sum_{j=0..n+1-k}binomial(n+1-k,j)*k^j*j^(n+1-k-j) for n>=0 and T(0,k) for k>=1.
E.g.f. of column k: exp(k*x*exp(x)).
With t(n,k) = T(n+k-1,k), t(n,k+j) = Sum_{i=0..n}binomial(n,i)*t(i,k)*t(n-i,j).
Comments