This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187152 #19 Nov 23 2019 04:03:51 %S A187152 2,3,7,3,10,22,3,10,32,71,3,10,32,103,228,3,10,32,103,331,733,3,10,32, %T A187152 103,331,1064,2356,3,10,32,103,331,1064,3420,7573,3,10,32,103,331, %U A187152 1064,3420,10993,24342,3,10,32,103,331,1064,3420,10993,35335,78243 %N A187152 Triangle T(m,n), read by rows: Number of bipartite labeled graphs (V,E) with vertices A={a_1,...,a_m} and B={b_1,...,b_n} where for any vertex in V at most one edge in E is allowed. Additionally, an edge {a_k,b_l} is allowed only when |k-l|<=1. %C A187152 This also has the obvious corresponding string alignment interpretation where we allow only one-to-one alignments between strings a_1...a_m and b_1...b_n, and additionally demand that aligned characters have a distance of at most 1. %F A187152 For m >= n: %F A187152 T(m,n) = %F A187152 A030186(m) if m = n %F A187152 A033505(n+1) if m >= n+1 %F A187152 Symmetrically extended by T(n,m)=T(m,n). %F A187152 Both the diagonal and the off-diagonals follow the recurrence a(n) = 3*a(n-1) + a(n-2) - a(n-3), n >= 3, with different initial conditions; 2,7,22 and 3,10,32, respectively. %e A187152 2; %e A187152 3 7; %e A187152 3 10 22; %e A187152 3 10 32 71; %e A187152 3 10 32 103 228; %e A187152 3 10 32 103 331 733; %e A187152 3 10 32 103 331 1064 2356; %e A187152 3 10 32 103 331 1064 3420 7573; %e A187152 3 10 32 103 331 1064 3420 10993 24342; %e A187152 3 10 32 103 331 1064 3420 10993 35335 78243; %e A187152 3 10 32 103 331 1064 3420 10993 35335 113578 251498; %Y A187152 Cf. A033505, A030186. %K A187152 nonn,tabl %O A187152 1,1 %A A187152 _Steffen Eger_, Mar 06 2011