A187155 T(n,k)=Number of n-step one space at a time bishop's tours on a kXk board summed over all starting positions.
1, 4, 0, 9, 4, 0, 16, 16, 0, 0, 25, 36, 20, 0, 0, 36, 64, 64, 8, 0, 0, 49, 100, 132, 92, 0, 0, 0, 64, 144, 224, 248, 72, 0, 0, 0, 81, 196, 340, 476, 388, 56, 0, 0, 0, 100, 256, 480, 776, 904, 456, 16, 0, 0, 0, 121, 324, 644, 1148, 1620, 1588, 544, 0, 0, 0, 0, 144, 400, 832, 1592
Offset: 1
Examples
Table starts .1.4..9.16..25...36....49....64.....81....100....121....144....169.....196 .0.4.16.36..64..100...144...196....256....324....400....484....576.....676 .0.0.20.64.132..224...340...480....644....832...1044...1280...1540....1824 .0.0..8.92.248..476...776..1148...1592...2108...2696...3356...4088....4892 .0.0..0.72.388..904..1620..2536...3652...4968...6484...8200..10116...12232 .0.0..0.56.456.1588..3288..5556...8392..11796..15768..20308..25416...31092 .0.0..0.16.544.2328..6172.11576..18540..27064..37148..48792..61996...76760 .0.0..0..0.472.3504.10576.23340..40448..61900..87696.117836.152320..191148 .0.0..0..0.392.4216.17696.43136..83844.136384.200756.276960.364996..464864 .0.0..0..0.168.5472.26912.80392.168104.296708.457848.651524.877736.1136484 Some n=4 solutions for 4X4 ..0..0..0..1....0..0..1..0....4..0..0..0....0..4..0..0....0..0..1..0 ..0..0..2..0....0..2..0..0....0..3..0..0....3..0..1..0....0..2..0..4 ..0..3..0..0....0..0..3..0....0..0..2..0....0..2..0..0....0..0..3..0 ..0..0..4..0....0..4..0..0....0..0..0..1....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..287
Crossrefs
Row 2 is A016742(n-1)
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 8*k + 4
Empirical: T(3,k) = 12*k^2 - 40*k + 32 for k>1
Empirical: T(4,k) = 36*k^2 - 168*k + 188 for k>2
Empirical: T(5,k) = 100*k^2 - 584*k + 808 for k>3
Empirical: T(6,k) = 284*k^2 - 1992*k + 3316 for k>4
Empirical: T(7,k) = 780*k^2 - 6296*k + 12024 for k>5
Empirical: T(8,k) = 2172*k^2 - 19816*k + 42860 for k>6