cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187155 T(n,k)=Number of n-step one space at a time bishop's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 4, 0, 16, 16, 0, 0, 25, 36, 20, 0, 0, 36, 64, 64, 8, 0, 0, 49, 100, 132, 92, 0, 0, 0, 64, 144, 224, 248, 72, 0, 0, 0, 81, 196, 340, 476, 388, 56, 0, 0, 0, 100, 256, 480, 776, 904, 456, 16, 0, 0, 0, 121, 324, 644, 1148, 1620, 1588, 544, 0, 0, 0, 0, 144, 400, 832, 1592
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2011

Keywords

Examples

			Table starts
.1.4..9.16..25...36....49....64.....81....100....121....144....169.....196
.0.4.16.36..64..100...144...196....256....324....400....484....576.....676
.0.0.20.64.132..224...340...480....644....832...1044...1280...1540....1824
.0.0..8.92.248..476...776..1148...1592...2108...2696...3356...4088....4892
.0.0..0.72.388..904..1620..2536...3652...4968...6484...8200..10116...12232
.0.0..0.56.456.1588..3288..5556...8392..11796..15768..20308..25416...31092
.0.0..0.16.544.2328..6172.11576..18540..27064..37148..48792..61996...76760
.0.0..0..0.472.3504.10576.23340..40448..61900..87696.117836.152320..191148
.0.0..0..0.392.4216.17696.43136..83844.136384.200756.276960.364996..464864
.0.0..0..0.168.5472.26912.80392.168104.296708.457848.651524.877736.1136484
Some n=4 solutions for 4X4
..0..0..0..1....0..0..1..0....4..0..0..0....0..4..0..0....0..0..1..0
..0..0..2..0....0..2..0..0....0..3..0..0....3..0..1..0....0..2..0..4
..0..3..0..0....0..0..3..0....0..0..2..0....0..2..0..0....0..0..3..0
..0..0..4..0....0..4..0..0....0..0..0..1....0..0..0..0....0..0..0..0
		

Crossrefs

Row 2 is A016742(n-1)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 8*k + 4
Empirical: T(3,k) = 12*k^2 - 40*k + 32 for k>1
Empirical: T(4,k) = 36*k^2 - 168*k + 188 for k>2
Empirical: T(5,k) = 100*k^2 - 584*k + 808 for k>3
Empirical: T(6,k) = 284*k^2 - 1992*k + 3316 for k>4
Empirical: T(7,k) = 780*k^2 - 6296*k + 12024 for k>5
Empirical: T(8,k) = 2172*k^2 - 19816*k + 42860 for k>6