A187159 Number of 6-step one space at a time bishop's tours on an n X n board summed over all starting positions.
0, 0, 0, 56, 456, 1588, 3288, 5556, 8392, 11796, 15768, 20308, 25416, 31092, 37336, 44148, 51528, 59476, 67992, 77076, 86728, 96948, 107736, 119092, 131016, 143508, 156568, 170196, 184392, 199156, 214488, 230388, 246856, 263892, 281496, 299668
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..3..0..0....0..0..2..0....0..0..5..0....0..0..4..0....0..3..0..0 ..4..0..2..0....0..1..0..3....0..4..0..6....0..5..0..3....2..0..4..0 ..0..5..0..1....6..0..4..0....3..0..1..0....6..0..2..0....0..1..0..5 ..0..0..6..0....0..5..0..0....0..2..0..0....0..1..0..0....0..0..6..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187155.
Formula
Empirical: a(n) = 284*n^2 - 1992*n + 3316 for n>4.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 4*x^4*(14 + 72*x + 97*x^2 - 41*x^3) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7.
(End)
Comments