A187161 Number of 8-step one space at a time bishop's tours on an n X n board summed over all starting positions.
0, 0, 0, 0, 472, 3504, 10576, 23340, 40448, 61900, 87696, 117836, 152320, 191148, 234320, 281836, 333696, 389900, 450448, 515340, 584576, 658156, 736080, 818348, 904960, 995916, 1091216, 1190860, 1294848, 1403180, 1515856, 1632876, 1754240
Offset: 1
Keywords
Examples
Some solutions for 5 X 5: ..0..0..3..0..0....0..0..7..0..0....0..0..0..0..0....0..2..0..0..0 ..0..2..0..4..0....0..6..0..8..0....0..0..7..0..0....3..0..1..0..0 ..1..0..7..0..5....0..0..5..0..0....0..8..0..6..0....0..4..0..0..0 ..0..8..0..6..0....0..4..0..2..0....1..0..3..0..5....5..0..7..0..0 ..0..0..0..0..0....0..0..3..0..1....0..2..0..4..0....0..6..0..8..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187155.
Formula
Empirical: a(n) = 2172*n^2 - 19816*n + 42860 for n>6.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 4*x^5*(118 + 522*x + 370*x^2 + 413*x^3 - 337*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9.
(End)
Comments