cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187162 T(n,k) = Number of n-step self-avoiding walks on a k X k X k cube summed over all starting positions.

Original entry on oeis.org

1, 8, 0, 27, 24, 0, 64, 108, 48, 0, 125, 288, 342, 96, 0, 216, 600, 1056, 1104, 144, 0, 343, 1080, 2370, 3984, 3240, 240, 0, 512, 1764, 4464, 9612, 14256, 9504, 192, 0, 729, 2688, 7518, 18888, 37470, 51504, 25344, 144, 0, 1000, 3888, 11712, 32712, 77184, 148224
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2011

Keywords

Examples

			Solution for n=9 3X3X3
  0  0  0     9  0  0     8  0  0
  0  2  1     6  0  0     7  0  0
  0  3  0     5  4  0     0  0  0
Table starts
  1   8     27      64      125      216       343       512       729      1000
  0  24    108     288      600     1080      1764      2688      3888      5400
  0  48    342    1056     2370     4464      7518     11712     17226     24240
  0  96   1104    3984     9612    18888     32712     51984     77604    110472
  0 144   3240   14256    37470    77184    137754    223536    338886    488160
  0 240   9504   51504   148224   320328    588924    975216   1500408   2185704
  0 192  25344  177120   568248  1298016   2466510   4175136   6525450   9619008
  0 144  67824  608928  2188608  5299056  10416624  18026640  28617228  42676728
  0   0 167016 2013360  8227752 21274896  43422072  76964016 124223214 187527168
  0   0 414912 6654048 30938640 85654320 181790352 330218544 541990896 828222216
		

Crossrefs

Formula

a(1,k) = k^3
a(2,k) = 6*k^3 - 6*k^2
a(3,k) = 30*k^3 - 60*k^2 + 24*k for k>1
a(4,k) = 150*k^3 - 426*k^2 + 312*k - 48 for k>2
a(5,k) = 726*k^3 - 2640*k^2 + 2688*k - 720 for k>3
a(6,k) = 3534*k^3 - 15366*k^2 + 19536*k - 7056 for k>4
a(7,k) = 16926*k^3 - 85380*k^2 + 128832*k - 57312 for k>5
a(8,k) = 81390*k^3 - 463074*k^2 + 801216*k - 418032 for k>6
a(9,k) = 387966*k^3 - 2452704*k^2 + 4766544*k - 2833872 for k>7
a(10,k) = 1853886*k^3 - 12825630*k^2 + 27515184*k - 18252624 for k>8
["Empirical" removed by Andrey Zabolotskiy, Feb 28 2022]