A187165 Number of 4-step self-avoiding walks on an n X n X n cube summed over all starting positions.
0, 96, 1104, 3984, 9612, 18888, 32712, 51984, 77604, 110472, 151488, 201552, 261564, 332424, 415032, 510288, 619092, 742344, 880944, 1035792, 1207788, 1397832, 1606824, 1835664, 2085252, 2356488, 2650272, 2967504, 3309084, 3675912, 4068888
Offset: 1
Keywords
Examples
A solution for 2 X 2 X 2: ..2..0.....3..4 ..1..0.....0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187162.
Formula
Empirical: a(n) = 150*n^3 - 426*n^2 + 312*n - 48 for n>2.
Conjectures from Colin Barker, Apr 20 2018: (Start)
G.f.: 12*x^2*(8 + 60*x + 12*x^2 - 7*x^3 + 2*x^4) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>6.
(End)
Comments